Preview

Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost

Advanced search

Cementless concretes, based on anthropogenic wastes of the Irkutsk Oblast

https://doi.org/10.21285/2227-2917-2023-4-625-634

EDN: JLCCLU

Abstract

The accepted global trend of transition from a linear economy to a closed-loop one stimulated the development of regulatory documents, such as “Strategy for the development of building materials in the Russian Federation and Irkutsk Oblast”, Decree of the Government of the Russian Federation dated 08/02/2023 No. 2094, both at federal and regional levels. Further, the Baikal interregional scientific and educational centre was established. All this aims at obtaining technologies for developing effective building materials, based on technogenic wastes, and establishing the production. It is planned to obtain effective building materials, based on the accumulated high-tonnage waste of the Usolye-Sibirskoye priority development area, such as ash and slag mixtures of the combined heat and power plant (90 million tons) and lime-containing waste, generated during the production of acetylene at the Khimprom PJSC (more than nine million tons). The paper represents a fundamentally new approach to obtaining artificially synthesised newgrowths of cementless concrete, based on technogenic wastes, which meets the requirements of regulatory standards in terms of frost and water resistance and allows using this concrete in enclosing structures. At a rationally selected ratio between lime-containing wastes and an ash-slag mixture, subject to the pre-established principles of technological preparation in terms of their mechanical activation, mixing technology, conditions and synthesis duration, it is possible to obtain high-quality cementless concrete that meets the basic requirements of regulatory documents for quality indicators.

About the Authors

K. Yu. Vabishevich
Irkutsk National Research Technical University
Russian Federation

Kristina Yu. Vabishevich, Applicant

83 Lermontov St., Irkutsk 664074

Author ID: 932484



S. V. Makarenko
Irkutsk National Research Technical University
Russian Federation

Sergey V. Makarenko, Cand. Sci (Eng.), Associate  Professor, Associate Professor of the Department of Construction Production

83 Lermontov St., Irkutsk 664074

Author ID: 1133127



O. V. Khokhryakov
Kazan State University of Architecture and Civil Engineering
Russian Federation

Oleg V. Khokhryakov, Cand. Sci (Eng.), Associate  Professor of the Department of Technology of Building Materials, Products and Structures

1 Green St., Kazan 420043

Author ID: 615854



V. G. Khozin
Kazan State University of Architecture and Civil Engineering
Russian Federation

Vadim G. Khozin, Doctor Sci (Eng.), Professor  Department of Technology of Building Materials, Products and Structures

1 Green St., Kazan 420043

Author ID: 43534



References

1. Semenov A. A. Silicate wall materials marketand problems of providing industry with raw materials. Stroitel'nye materialy = Construction materials. 2015;12:40–43. (In Russ.). EDN: VHZXXF.

2. Kuznetsova G. V. Steam curing of silicate brick in autoclave. Stroitel'nye materialy = Construction materials. 2015;10:10-14. (In Russ.). EDN: UXCFDL.

3. Riazanov A. N., Vinnichenko V. I., Nedoseco I. V., Riazanova V. A., Riazanov A. A. Structure and properties of lime-ash cement and its modification. Stroitel'nye materialy = Construction materials. 2018;1–2:18-22. (In Russ.). EDN: YRQXTA.

4. Kotlyar V. D., Kozlov A. V., Zhivotkov O. I., Kozlov G. A. Calcium-silicate brick on the basis of microspheres and lime. Stroitel'nye materialy = Construction materials. 2018;9:17-21. https://doi.org/10.31659/0585-430X-2018-763-9-17-21. EDN: XZJALZ.

5. Semenov A. A. Silicate brick and gas silicate. Some trends at the market in 2018-2019. Stroitel'nye materialy = Construction materials. 2019;8:3-5. (In Russ.). https://doi.org/10.31659/0585-430X-2019-773-8-3-5. EDN: TFUZFG.

6. Nelyubova V. V., Strokova V. V. Technology of silicate pressed materials. review of innovations for the development of production. Stroitel'nye materialy = Construction materials. 2019;8:6-13. (In Russ.). https://doi.org/10.31659/0585-430X-2019-773-8-6-13. EDN: QRDGQK.

7. Stolboushkin A. Yu. Production of silicate materials with addition of fine-ground open-hearth furnace slag. Stroitel'nye materialy = Construction materials. 2019;8:26-32. (In Russ.). https://doi.org/10.31659/0585-430X-2019-773-8-26-32. EDN: HXCRQH.

8. Kuznetsova G. V. Crushing of lime in the production of lime - silica binder at operating plants of silicate bricks. Stroitel'nye materialy = Construction materials. 2019;8:14-17. (In Russ.). https://doi.org/10.31659/0585-430X-2019-773-8-14-17. EDN: GLSRDW.

9. Rusina V. V., Shestakova Yu. A. Clinkerless binders based on peat ash. Stroitel'nye materialy = Construction materials. 2019;10:70-74. (In Russ.). https://doi.org/10.31659/0585-430X-2019-775-10-70-74. EDN: LGLIFV.

10. Kuznetsova G. V., Morozova N. N. Additive for autoclave aerated concrete on quick-slaking lime. Stroitel'nye materialy = Construction materials. 2020;9:4-8. (In Russ.). https://doi.org/10.31659/0585-430X-2020-784-9-4-8. EDN: XUPJGY.

11. Nelubova V. V., Strokova V. V., Popov A. L. Silicate brick using mineral modifiers of various composition. Stroitel'nye materialy = Construction materials. 2021;1-2:115-120. (In Russ.). https://doi.org/10.31659/0585- 430X-2021-788-1-2-115-120. EDN: OIKEMK.

12. Bezrodnykh A. A., Strokova V. V., Markova I. Yu., Potapov D. Yu. Bitumen emulsions for road construction purposes, modified by fly ash. Stroitel'nye materialy = Construction materials. 2021;11:59–66. (In Russ.). https://doi.org/10.31659/0585-430X-2021-797-11-59-66. EDN: UEIQIT.

13. Petropavlovskaya V. B., Zavadko M. Y., Novichenkova T. B., Petropavlovskii K. S., Buryanov A. F. Prospects for the bottom ash from hydraulic removal use if in dry building mixtures. Part 1. Stroitel'nye materialy = Construction materials. 2023;4:73-79. (In Russ.). https://doi.org/10.31659/0585-430X-2023-812-4-73-79. EDN: NIIVPI.

14. Kozhukhova N. I., Danakin D. N., Zhernovsky I. V. Features of producing geopolymeric gas concrete on the basis of fly ash OF Novotroitskaya TPS. Stroitel'nye materialy = Construction materials. 2017;1-2:113- 117. (In Russ.). EDN: XXIHXF.

15. Vishnevsky A. A., Grinfeld G. I., Smirnova A. S. Russian market of autoclave gas concrete. Results of 2016. Stroitel'nye materialy = Construction materials. 2017;3:49-51. (In Russ.). EDN: YHZYJF.

16. Nesterov A. N., Datukashvili D. O. Production of high-calcium lime in Russia. Stroitel'nye materialy = Construction materials. 2017;3:52-59. (In Russ.). EDN: YHZYJP.

17. Ngo Van Toan. Research on the production of high-strength concrete using fine sand and mineral additives mixed with activated blast-furnace slag and rice husk ash. Journal Building Materials – Environment. 2012;4:36-45.

18. Lam Van Tang, Bulgakov B., Aleksandrova O., Anh N.P. Effect of rice husk ash on hydrotechnical concrete behavior. In: 21st International scientific conference on advanced in civil engineering construction – The formation of living environment (FORM). 25-27 April 2018, Moscow. Moscow: Moscow state university of civil engineering; 2018. Vol. 365. p. 032007. https://doi.org/10.1088/1757-899X/365/3.

19. Aranda M.A.G., De la Torre A.G. Sulfoaluminate cement. Eco-efficient concrete. 2013. P. 488–522. https://doi.org/10.1533/9780857098993.4.488.

20. Martin L.H., Winnefeld F., Tschopp E., Müller C.J., Lothenbach B. Influence of fly ash on the hy-dration of calcium sulfoaluminate cement. Cement and Concrete Research. 2017;95:152-163. https://doi.org/10.1016/j.cemconres.2017.02.030.

21. Tang Van Lam, Bulgakov B., Bazhenova S.,Aleksandrova O., Anh Ngoc Pham, Tho Dinh Vu, et al. Effect of rice husk ash and fly ash on the workability of concrete mixture in the high-rise construction. In: E3S Web of Conferences. January 2018. 2018;33(28):02029. https://doi.org/10.1051/e3sconf/20183302029.

22. Xue Z., Gong Y., Guo Q., Wang F., Guangsuo Yu. Visualization study on breakup modes of coal water slurry in an impinging entrained-flow gasifier. Fuel. 2019;244(3):40-47. https://doi.org/10.1016/j.fuel.2019.01.186.

23. Park J.-H., Lee Y.-J., Jin M.-H. et. al. Enhancement of slurryability and heating value of coal water slurry (CWS) by torrefaction treatment of low rank coal (LRC). Fuel. 2017;203:607-617. https://doi.org/10.1016/j.fuel.2017.03.016.

24. Dmitrienko M. A., Nyashina G. S., Strizhak P. A. Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals. Journal of Hazardous Materials. 2017;338:148-159. https://doi.org/10.1016/j.jhazmat.2017.05.031. EDN: XNGLFA.

25. Glushkov D.O., Lyrshchikov S.Y., Shevyrev S.A., Strizhak P.A. Burning properties of slurry based on coal and oil processing waste. Energy Fuels. 2016;30(4):3441-3450. https://doi.org/10.1021/acs.energyfuels.5b02881.

26. Chukaeva M., Zaytseva T., Matveeva V., Sverchkov I. Purification of Oil-Contaminated Wastewater with a Modified Natural Adsorbent. Ecological Engineering & Environmental Technology. 2021;22(2):46-51. https://doi.org/10.12912/27197050/133331.

27. Matveeva V.A., Isakov A.E., Sverchkov I.P. The reduction of negative impact on environment in the area of coal processing enterprises. In: Innovation-based development of the mineral resources sector: challenges and prospects: 11th Conference of the Russian-German raw materials. 07-08 November 2018, Potsdam. Potsdam; 2019. Vol. 1. p. 431–436. EDN: VTETYT.

28. Kim B., Prezzi M., Salgado R. Geotechnical Properties of Fly and Bottom Ash Mixtures for Use in Highway Em-bankments. Journal of Geotechnical and Geoenvironmental Engineering. 2005;131:914-924. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(914).

29. Ogunro V.O., Inyang H.I., Hooper F. et al. Gradation Control of Bottom Ash Aggregate in Super-pave Bituminous Mixes. Journal of Materials in Civil Engineering. 2004;16:604-613. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(604).

30. Marinin M.A., Dolzhikov V.V., Isheyskiy V.A. Improving the efficiency of drilling and blasting opera-tions for high water cut conditions. Journal of Mining Science. 2019;55(5):783-788. https://doi.org/10.4028/www.scientific.net/KEM.836.124.


Review

For citations:


Vabishevich K.Yu., Makarenko S.V., Khokhryakov O.V., Khozin V.G. Cementless concretes, based on anthropogenic wastes of the Irkutsk Oblast. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2023;13(4):625-634. (In Russ.) https://doi.org/10.21285/2227-2917-2023-4-625-634. EDN: JLCCLU

Views: 162


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2917 (Print)
ISSN 2500-154X (Online)