Preview

Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost

Advanced search

Comparison of bearing capacity and hogging of axially loaded columns in a foam concrete casing

https://doi.org/10.21285/2227-2917-2023-4-666-676

EDN: QLRLCF

Abstract

This work identifies the operation characteristics of axially loaded metal columns located within a foam concrete casing. The structures based on steel elements structurally combined with monolithic non-autoclaved foam concrete, used as filling for cladding, were investigated. The load-bearing capacity of axially loaded columns in free and constrained loads were compared. The columns were loaded using vertical test benches, and longitudinal deformations were recorded using a TK-50M strain gauge. Transverse movements (hogging) were measured using a dial gauge. Comparative theoretical calculations for the bearing capacity of loaded columns were carried out in accordance with the building rules and regulations SP 16.13330.2017 “Steel structures”. In experiments involving static axial loading of open-section columns, an increase in the stability of constrained columns was determined, and the ratio of longitudinal hogging of columns in a free and constrained state was shown. In addition, it was revealed that the size of the casing influences the magnitude and nature of the longitudinal bending. Therefore, it became possible to save metal by reducing the cross-section of the columns, while maintaining a bearing capacity similar to that of the free columns. The study demonstrated that as the ratio of the area of the surrounding foam concrete casing to the cross-sectional area of the loaded column increases, metal savings are correspondingly higher.

About the Authors

A. I. Savenkov
Angarsk State Technical University
Russian Federation

Andrey I. Savenkov, Cand. Sci. (Eng.), Associate Professor,
Associate Professor of the Department of Industrial and Civil Engineering

60 Tchaikovsky St., Angarsk 665835

Author ID: 426253



A. O. Bessonova
Angarsk State Technical University
Russian Federation

Alena O. Bessonova, Educational Master of the Department of Industrial and Civil Engineering, Assistant

60 Tchaikovsky St., Angarsk 665835

Author ID: 1163989



P. A. Shustov
Irkutsk National Research Technical University
Russian Federation

Pavel A. Shustov, Cand. Sci. (Eng.), Associate Professor,
Associate Professor of the Department of Construction Production

83 Lermontova St., Irkutsk 664074

Author ID: 683279



References

1. Suzuki Yu., Lignos Dimitrios G. Development of collapse-consistent loading protocols for experimental testing of steel columns. Earthquake Engineering & Structural Dynamics. 2019;49(2):114-131. https://doi.org/10.1002/eqe.3225.

2. Yogesh Tambe, Pravin Nemade. Physical and mechanical properties of foamed concrete, a literature review. Songklanakarin journal of science and technology. 2022;44(4):936-944. https://doi.org/10.14456/sjstpsu.2022.125.

3. Yonggui Chen, Leilei Guan, Shen-Yi Zhu, Wei-Jia Chen. Foamed concrete containing fly ash: Properties and application to backfilling. Construction and building materials. 2020;273:121685. https://doi.org/10.1016/j.conbuildmat.2020.12168.

4. Kozłowski M., Kadela M. Mechanical characterization of lightweight foamed concrete. Advances in materials science and engineering. 2018;2018:6801258. https://doi.org/10.1155/2018/6801258.

5. Hui Jin, Qing Chun. Research on fire-resistance capacities of steel columns with partial-damaged fire protection coating. KSCE Journal of Civil Engineering. 2020;24:1893-1902. https://doi.org/10.1007/s12205-020-1795-2.

6. Savenkov A.I., Zaenets E.O., Ketner A.V. Stability of metal frame elements when working in cramped conditions. Sovremennye tekhnologii i nauchno-tekhnicheskii progress. 2021;8:199-200. (In Russ.). EDN: KNRTFY.

7. Savenkov A.I., Zaenets E.O., Ketner A.V. Deformations of an off-center compressed rack in a foam concrete cage. Sbornik nauchnykh trudov Angarskogo gosudarstvennogo tekhnicheskogo universiteta. 2021;1(18):130-133. (In Russ.). EDN: FZWWHA.

8. Artemyev E.A. Bearing capacity of centrally compressed reinforced concrete elements corrosion-damaged as a result of fire exposure. Promyshlennoe i grazhdanskoe stroitel'stvo = Industrial and civil engineering. 2019;6:35-39. (In Russ.). https://doi.org/10.33622/0869-7019.2019.06.35-39. EDN: ZZJHBJ.

9. Buzalo N.A, Gontarenko I.V, Chernykhovsky B.A Reducing the force resistance of steel columns in industrial buildings with corrosion damage during operation. Stroitel'stvo i arkhitektura = Construction and Architecture. 2020. T. 8. № 4. S. 9–13. https://doi.org/10.29039/2308-0191-2020-8-4-9-13. EDN: YACKOL.

10. Li J., Wang X., Li Ch., Lu W. Bearing Capacity of Light-Steel Compound Section and Steel Columns under Axial Compression. Advances in civil engineering. 2022;2022:8061015. https://doi.org/10.1155/2022/8061015.

11. Sonnenschein R., Gajdosova K., Gramblička Š. Comparison of composite, steel and reinforced con-crete columns. In: 5th World multidisciplinary civil engineering-architecture-urban planning symposium – WMCAUS IOP Conference series materials science and engineering. 15-19 June 2020, Prague. 2020. Vol. 960. p. 032093. https://doi.org/10.1088/1757-899X/960/3/032093.

12. Sourabh Dhiman, Nirbhay Thakur, Nitish Kumar Sharma. A Review on behaviour of columns of steel framed structure with various steel sections. International journal of engineering and technology. 2019;06(03):587-590.

13. Savenkov A.I., Shustov P.A., Gorbach P.S., Ploskonosova A.O. Evaluation of the strength of foam concrete under axial uniaxial compression. Izvestiya vuzov. Investitsii. Stroitel'stvo. Nedvizhimost' = Proceedings of Universities. Investment. Construction. Real estate. 2020;10(1):100-107. (In Russ.). https://doi.org/10.21285/2227-2917-2020-1-100-107. EDN: KYMNTY.

14. Savenkov A.I., Ploskonosova A.O. Calculation of bending and bearing capacity of noncentrallycompressed closed-section racks. Vestnik Angarskogo gosudarstvennogo tekhnicheskogo universiteta. 2022;16:150-153. (In Russ.). EDN: PYODFV.

15. Umnova O.V., Tuev D.S. Method of direct determination of the bearing capacity of thin-walled cold-bent steel profiles on the example of calculating a centrally compressed rack. In: Ustoichivoe razvitie regiona: arkhitektura, stroitel'stvo, transport: materialy 6-oi Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 40-letnemu yubileyu Instituta arkhitektury, stroitel'stva i transporta TGTU = Sustainable development of the region: architecture, construction, transport. Materials of the 6th International Scientific and Practical Conference dedicated to the 40th anniversary of the Institute of Architecture, Construction and Transport of Tambov State Technical University. 22-25 May 2019, Tambov. Tambov: Pershina R.V. Publ.; 2019. p. 389–395. (In Russ.). EDN: YHGDQZ.

16. Buzalo N.A., Gontarenko I.V., Chernykhovskiy B.A., Chepizubov I.G. Influence of mechanical damages on the load-bearing capacity of steel columns in industrial buildings. BST: Byulleten' stroitel'noj tehniki. 2020;6:46-50. (In Russ.). EDN: VOTIDQ.

17. Savenkov A.I., Zayenets E.O., Ketner A.V. Concealed frame made of light steel thin-walled structures in monolithic foam concrete. Sbornik nauchnykh trudov Angarskogo gosudarstvennogo tekhnicheskogo universiteta. 2022;1(18):134-137. (In Russ.). EDN: UZHRXT.

18. Kertbiev A.A., Shugushev M.M. Calculation of the rational section of a compressed rack with longitudinal bending. In: Perspektiva–2022: materialy Mezhdunarodnoi nauchnoi konferentsii studentov, aspirantov i molodykh uchenykh = Perspective–2022: materials of the International scientific conference of students, postgraduates and young scientists. 22-30 April 2022, Nal'chik. Nal'chik: Kabardino-Balkarian state university named after H.M. Berbekov; 2022. Vol. 4. p. 174-177. (In Russ.). EDN: CHEWUD.

19. Bakushev S.V., Loshchinin N.A. Calculation of an off-center compressed rack for a transverse load. Modelirovanie i mekhanika konstruktsii. 2023;17:53-61. (In Russ.). EDN: IKCIEK.

20. Sangeetha P., Ashwin Muthuraman R.M., Dachina G., Dhivya M., Janani S., Sai Madumathi. Behaviour of Concrete Filled Steel Tubes. Journal of informatics and mathematical sciences. 2018;10(1-2):297-304. https://doi.org/10.26713/jims.v10i1-2.1056.

21. Li P., Zhang T., Wang Ch. Behavior of concrete-filled steel tube columns subjected to axial compression. Advances in Materials Science and Engineering. 2018;2018:4059675. https://doi.org/10.1155/2018/4059675.

22. Baragunova L.A., Lafisheva M.M., Khazhirokov I.H. On the optimal section of a compressed rack. In: Perspektivnye nauchnye issledovaniya: opyt, problemy i perspektivy razvitiya: sbornik nauchnykh statei po materialam IX Mezhdunarodnoi nauchno-prakticheskoi konferentsii = Promising scientific research: experience, problems and prospects of development: collection of scientific articles based on the materials of the IX International scientific and practical conference. 09 December 2022, Ufa. Ufa: Limited Liability Company Scientific Publishing Center "Bulletin of Science"; 2022. Vol. 2. p. 212-219. EDN: YNNYIM.

23. Krishan A. Bearing Capacity of Concrete Filled Steel Tube Columns. In: Sustainability of Concrete With Synthetic and Recycled Aggregates. Eds. Hosam M. Saleh. 2021. https://doi.org/10.5772/intechopen.99650.

24. Zholdoshov B.M., Sheralieva S.T. Esearching the strength and stability of metal columns. Izvestiya Oshskogo tekhnologicheskogo universiteta = Izvestiy Oshskogo technologicheskogo university. 2019;2:185-189. EDN: TKAGHQ.

25. Nikitina A.E., Mikhailov B.V. Angles of rotation of nodes of critical points of monitoring of a metal rack at loss of stability. Vestnik nauki. 2021;5(5-1):120-125. EDN: BAPPKB.

26. Muschanov A.V., Tseplyaev M.N. New approaches to assessing the stability of elements of spatial metal structures. In: Nauka i tvorchestvo vklad molodezhi: sbornik materialov Vserossiiskoi molodezhnoi nauchnoprakticheskoi konferentsii studentov, aspirantov i molodykh uchenykh = Science and creativity contribution of youth: a collection of materials of the All-Russian Youth Scientific and practical Conference of students, postgraduates and young scientists. 10-11 November 2022, Makhachkala. Makhachkala: Format PH; 2022. p. 196-200. (In Russ.). EDN: NEWMKM.

27. Fisenko E.N., Sabirov R.A. Stability analysis of centrally compressed thin-walled rods. Mechanics: Researchs and innovations. 2022;15:283-285. (In Russ.).

28. Vyatkin Yu.A., Kanygin R.I., Kanygin I.I., Pukhov M.A. Determination of the actual voltage in a compressed rack. In: Matematika i matematicheskoe modelirovanie: sbornik materialov XV Vserossiiskoi molodezhnoi nauchno-innovatsionnoi shkoly = Mathematics and mathematical modeling: collection of materials of the XV All-Russian youth scientific and innovative school. 07-09 April 2021, Sarov. Moscow: National research nuclear university "MEPHI"; 2020. p. 91. (In Russ.). EDN: DIUBTH.

29. Arushonok Yu.Yu. About errors of design of building constructions. Inzhenernyi vestnik Dona = Ingineering journal of Don. 2021;11:488-498. (In Russ.). EDN: IAKKDK.

30. Konin D.V. Experimental studies of steel rods for central and off-center compression. Vestnik NITS «Stroitel'stvo» = Bulletin of Science and Research Center of Construction. 2021;1:16-37. (In Russ.). https://doi.org/10.37538/2224-9494-2021-1(28)-16-37. EDN: JSWWYL.


Review

For citations:


Savenkov A.I., Bessonova A.O., Shustov P.A. Comparison of bearing capacity and hogging of axially loaded columns in a foam concrete casing. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2023;13(4):666-676. (In Russ.) https://doi.org/10.21285/2227-2917-2023-4-666-676. EDN: QLRLCF

Views: 104


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2917 (Print)
ISSN 2500-154X (Online)