Combining parametric discreteness and continuity for analyzing dynamic models of structures
https://doi.org/10.21285/2227-2917-2024-4-777-786
EDN: OBHCWT
Abstract
This paper describes a method for building dynamic models that contain rod bending elements with distributed and concentrated inertial and stiffness parameters, and their analysis based on the harmonic element method. As a rule, the vibration effects of structures are calculated on the basis of mass discretization, although the application of such methods entails certain difficulties.
Discrete models are considered to be a priori approximations with limited possibilities of error estimation. The dynamic parameters of the model vary depending on its dimensionality as well as on the transformation methods. Numerical results with arrays and matrices of high dimensionality make it difficult to analyze and evaluate the calculation results. Therefore, structural calculations for stationary dynamic effects based on the use of elements with distributed and concentrated masses prevent the above-mentioned consequences of full discretization. However, such discrete-continuum (hybrid) dynamic models require the sewing of heterogeneous elements at the formation stage. In addition, some complications occur when solving these combined systems containing ordinary differential equations and partial differential equations. These issues can be solved by using the author's harmonic element method, implementing the nodal sewing of heterogeneous elements, as well as providing solutions as amplitudes of oscillations of the combined model nodes along certain necessary directions. The specified features of the proposed method allow us to identify it as a separate class with the name of the harmonic element method.
About the Authors
V. I. SobolevRussian Federation
Vladimir I. Sobolev, Dr. Sci (Eng.), Professor, Professor of the Department of Mechanics and Resistance of Materials
AuthorID: 4041
83 Lermontov St., Irkutsk 664074
Competing Interests:
The authors declare no conflict of interests regarding the publication of this article.
D. A. Karmazinov
Russian Federation
Danil A. Karmazinov, Design Engineer of StroyProektService LLC; Postgraduate Student, Irkutsk National Research Technical University
AuthorID: 1182680
35 Lesi Ukrainka St., Irkutsk 664074
83 Lermontov St., Irkutsk 664074
Competing Interests:
The authors declare no conflict of interests regarding the publication of this article.
T. N. Chernigovskaya
Russian Federation
Tatyana N. Chernigovskaya, Senior Lecturer of the Department of Mathmatics
AuthorID: 520237
15 Chernyshevskogo St., Irkutsk 664074
Competing Interests:
The authors declare no conflict of interests regarding the publication of this article.
References
1. Gubanov V.A., Zakharov V.V., Kovalenko A.N. Introduction to Systems Analysis. Leningrad: Leningrad University, 1988. 227 p. (In Russ.).
2. Klir Dzh. Systemology. Automation of Solving Systemic Problems, 1990, 538 p. (Russ. еd.: Sistemologiya. Avtomatizatsiya resheniya sistemnykh zadach. Moscow: Radio and Communications, 1990. 538 p.).
3. Poincare H. Les Méthodes Nouvelles De La Mécanique Céleste. Paris: Gauthier-Villars et fils, 1892. 408 p.
4. Butenin N.V., Neimark Yu.I., Fufaev N.A. Introduction to The Theory of Nonlinear Oscillations. Moscow: Nauka, 1976. 384 p. (In Russ.).
5. Sobolev V.I. Discrete-Continuous Dynamic Systems and Vibration Isolation of Industrial Screens. Irkutsk: Irkutsk National Research Technical University, 2002. 201 p. (In Russ.).
6. Sobolev V.I., Chernigovskaya T.N. Method of Harmonic Element in Stationary Dynamic Process Modeling. Vestnik VSGTU. 2010;1:43-51. (In Russ.). EDN: MLJWYL.
7. Sobolev V.I., Chernigovskaya T.N. Construction of A Rectangular Harmonic Element for Modeling the Vibrations of a Thin Plate. Modern Technologies. System Analysis. Modeling. 2007;4(16):28-32. (In Russ.). EDN: JURRIN.
8. Gaskin V.V., Snitko A.N., Sobolev V.I. Dynamics and Seismic Resistance of Buildings and Structures. Irkutsk: Irkutsk State University, 1992. 164 p. (In Russ.). EDN: WHZMGH.
9. Klaf R., Penzien Dzh. Dynamics of Structures, 1979, 320 p. (Russ. еd.: Dinamika sooruzhenii. Moscow: Stroyizdat, 1979. 320 p.).
10. Gal'perin I. Introduction to the Theory of Generalized Functions, 1954, 64 p. (Russ. еd.: Vvedenie v teoriyu obobshchennykh funktsii. Moscow: Foreign Literature Publishing House, 1954. 64 p.).
11. Akhiezer N.I. Lectures on Approximation Theory. Moscow: Nauka, 1965. 407 p. (In Russ.).
12. Bernshtein S.N. Extremal Properties of Polynomials and Best Approximation of Continuous Functions of One Real Variable. Moscow, Leningrad: Main Editorial Board of General Technical Literature, 1937. P. 1. 203 p. (In Russ.).
13. Galiev K.S., Gordon L.A., Rozin L.A. On The Construction of a Universal Stiffness Matrix in The Finite Element Method. Izvestiya VNIIG im. B.E. Vedeneeva. 1974;105:174-188.
14. Petryakov V.B. Design of Radio-Electronic Equipment. Moscow: Sovetskoe Radio, 1969. 208 p. (In Russ.).
15. Devenport Dzh., Sire I., Turn'e E. Computer Algebra. Systems and Algorithms for Algebraic Calculations, 1991, 350 p. (Russ. еd.: Komp'yuternaya algebra. Sistemy i algoritmy algebraicheskikh vychislenii. Moscow: Mir, 1991. 350 p.).
16. Forrester Dzh. Fundamentals of Enterprise Cybernetics (Industrial Dynamics), 1971, 340 p. (Russ. еd.: Osnovy kibernetiki predpriyatiya (industrial'naya dinamika). Moscow: Progress, 1971. 340 p.).
17. Khayasi Tikhiro Forced Oscillations in Nonlinear Systems, 1957, 204 p. (Russ. еd.: Vynuzhdennye kolebaniya v nelineinykh sistemakh. Moscow: Foreign Literature Publishing House, 1957. 204 p.).
18. Airapetov E.L., Genkin M.D., Kosarev O.I., Pavlov B.I., Fedoseev Yu.N. Application of A Computer for Calculating Multi-Connected Systems by The Dynamic Stiffness Method. In: Solving Problems of Mechanical Engineering On a Computer. Moscow: Nauka, 1975. p. 42–47. (In Russ.).
19. Koloushek V., Babushka I. Dynamics of Building Structures, 1965, 632 p. (Russ. еd.: Dinamika stroitel'nykh konstruktsii. Moscow: Stroyizdat, 1965. 632 p.).
20. Korneichuk N.P., Lichun A.A., Doronin V.G. Approximation with Constraints. Kyiv: Naukova Dumka, 1988. 250 p. (In Russ.).
Review
For citations:
Sobolev V.I., Karmazinov D.A., Chernigovskaya T.N. Combining parametric discreteness and continuity for analyzing dynamic models of structures. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2024;14(4):777-786. (In Russ.) https://doi.org/10.21285/2227-2917-2024-4-777-786. EDN: OBHCWT