Preview

Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost

Advanced search

On asymptotic features of n-spheres

https://doi.org/10.21285/2227-2917-2025-1-64-72

EDN: XSVWXG

Abstract

As an object of computer simulation, a three-dimensional sphere is used in many areas of contemporary science and technology due to its convenience, simplicity, and versatility. An increased number of parameters for contemporary models complicates the limiting area of simulation parameters to an n-dimensional sphere (n-sphere). For example, a four-dimensional sphere used in astronomy to simulate the movement of celestial bodies includes a fourth parameter of time in addition to the length, width, and height of material point movement. In other areas of science, the growing number of simulation parameters increases the dimensionality of the limiting sphere. This sets the problem of the limit number of simulation parameters for maintaining the relevance of the model. The article examines the asymptotic features of n-sphere parameters at an unlimited increase in the sphere dimensionality and number of simulation parameters. For providing an analytical solution to the problem and its numerical simulation, a hypothesis about the limited use of n-spheres for high-order models is put forward. The article may be of interest to researchers and students studying numerical simulation and infinite behavior of hyperspheres.

About the Authors

S. S. Bokov
Russian University of Transport (MIIT)
Russian Federation

Sergei S. Bokov, Senior Lecturer of the Department of Buildings and Structures in Transport

9, 9 Bldg., Obraztsova St., Moscow 127994, GSP-4

AuthorID: 1051214


Competing Interests:

The authors declare no conflict of interests regarding the publication of this article



R. N. Shmatkov
Siberian Transport University
Russian Federation

Ruslan N. Shmatkov, Candidate of Physico-Mathematical Sciences, Associate Professor, Associate Professor of the Department of Higher Mathematics

191 Dusy Kovalchuk St., 630049 Novosibirsk

AuthorID: 14998


Competing Interests:

The authors declare no conflict of interests regarding the publication of this article



References

1. Larin A.O., Seredin O.S., Kopylov A.V. Modified Criterion for Description of Data with A Hypersphere Taking into Account Outliers. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2020;10:231-239. (In Russ.). EDN: BFLGEK.

2. Meleshkin S.N. Method of Construction Own Field Class in The Form of a Hypersphere in Optimization Problems Separating Surface. Natsional'naya Assotsiatsiya Uchenykh. 2015;3-3:88-92. (In Russ.). EDN: YGFJKZ.

3. Saushev A.V. Optimization of Parameters of Complicated Electrotechnical Systems. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova. 2013;2(21):35-44. (In Russ.). EDN: RUOHZL.

4. Zemlyanskii A.A., Snezhko V.L., Zainudinov S.Z. Current Foundations of Digitalization. Moscow: Sputnik+, 2019. 165 p. (In Russ.). EDN: FBHRVH.

5. Lapidus A.A., Loktev V.A. The Formation of Methodology for Improving the Life Cycle Management of Social Infrastructure Facilities. Components of Scientific and Technological Progress. 2023;7(85):30-34. (In Russ.). EDN: DDGQGB.

6. Lei Lei, Bing Wu, Xin Fang, Li Chen, Hao Wu, Wei Liu A Dynamic Anomaly Detection Method of Building Energy Consumption Based on Data Mining Technology. Energy. 2023;263:1-19. https://doi.org/10.1016/j.energy.2022.125575.

7. Vinogradov I.M. Mathematical Encyclopedia. Moscow: Soviet Encyclopedia, 1985. Vol. 5. 624 p. (In Russ.).

8. Neklyudov A.V. Some Nonstandart Proofs and Problems in The Analysis. Inzhenernyi zhurnal: nauka i innovatsii. 2013;5(17):1-11. (In Russ.). EDN: RHAKVT.

9. Huber G. Gamma Function Derivation of n-Sphere Volumes. The American Mathematical Monthly. 1982. Vol. 89. Iss. 5. P. 301–302. https://doi.org/10.2307/2321716.

10. Burakov S.V., Ziborov E.D., Sipachev V.S., Tyukacheva I.M. The calculation Metod of the N-Dimensional Sphere Area Using the Poisson Integral. Aktual'nye problemy aviatsii i kosmonavtiki. 2017;2(13):265-267. (In Russ.). EDN: YQWFZN.

11. Sami I. Muslih, Om P. Agrawal A Scaling Method and Its Applications to Problems in Fractional Dimensional Space. Journal of Mathematical Physics. 2009;50(12):123501. https://doi.org/10.1063/1.3263940.

12. Rusanov V.S., Ryazantsev M.N. Modification of the Scalable Hypersphere Algorithm for Finding Reaction Paths on the Potential Energy Surface of Molecules. In: Nedelya nauki SPBPU. Materialy nauchnoi konferentsii s mezhdunarodnym uchastiem = SPBPU Science Week. Proceedings of The Scientific Conference with International Participation. 13–19 November 2017, Saint Petersburg. Saint Petersburg; 2017. p. 284–286. (In Russ.). EDN: YCGHGR.

13. Qing Li, Guanzhong Wu, Hang Ni, Tao You Anomaly Detection with Dual-Channel Heterogeneous Graph Based On Hypersphere Learning Information Sciences. 2024;681:1-17. https://doi.org/10.1016/j.ins.2024.121242.

14. Serat J. Modeling and Optimization of Costs Associated with The Development of Clustered Organizational Management Structures in Construction Companies. Proceedings of Universities. Investment. Construction. Real estate. 2024;14(2):348-355. (In Russ.). https://doi.org/10.21285/2227-2917-2024-2-348-355. EDN: UEVQNI.

15. Dapeng Wang, Dequan Zhang, Yuan Meng, Meide Yang, Chuizhou Meng, Xu Han et al. AK-HRn: An Efficient Adaptive Kriging-Based N-Hypersphere Rings Method for Structural Reliability Analysis. Computer Methods in Applied Mechanics and Engineering. 2023;414:1-24. https://doi.org/10.1016/j.cma.2023.116146.

16. Hughes M., Goerigk M., Wright M. A Largest Empty Hypersphere Metaheuristic for Robust Optimisation with Implementation Uncertainty. Computers and Operations Research. 2019;103:64-80. https://doi.org/10.1016/j.cor.2018.10.013.

17. Davey N.A.C., Chase J.G., Cong Zhou, Liam Murphy Preserving Multi-Dimensional Information: A Hypersphere Method for Parameter Space Analysis. Heliyon. 2024;10(7):1-16. https://doi.org/10.1016/j.heliyon.2024.e28822.

18. Galustov G.G., Meleshkin S.N. Principal Component Method in Problems of Dimensionality Reduction of Feature Space of Biomedical Data for the Purpose of Their Visualization. In: Tsifrovye metody i tekhnologii: materialy mezhdunarodnoi nauchnoi konferentsii = Digital Methods and Technologies: Materials of The International Scientific Conference. 01–30 November 2005, Taganrog. Taganrog; 2005. p. 34–37. (In Russ.).

19. Galustov G.G., Meleshkin S.N. Method for Forming Regions of Acceptable Probabilities in Problems of Classification of Biomedical Data Visualized in A Two-Dimensional Feature Space. In: Tsifrovye metody i tekhnologii: materialy mezhdunarodnoi nauchnoi konferentsii = Digital Methods and Technologies: Materials of The International Scientific Conference. 01–30 November 2005, Taganrog. Taganrog; 2005. p. 30–34. (In Russ.). EDN: JLRLUQ.

20. Badmaeva I.A., Volkova E.V. Information Modelling of Road Facilities. Proceedings of Universities. Investment. Construction. Real estate. 2022;12(4):521-528. (In Russ.). https://doi.org/10.21285/2227-2917-2022-4-521-528. EDN: FXCTCH.

21. Peshkov V.V., Kudryavtseva V.A., Nikishina O.V. Mechanism of Integrated Territorial Development as A Basic Resource for Promoting Regional Housing Construction. Proceedings of Universities. Investment. Construction. Real estate. 2024;14(1):10-19. https://doi.org/10.21285/2227-2917-2024-1-10-19. (In Russ.). EDN: UINEZA.

22. Dmitrieva T.L., Yashchenko V.P., Kuryshov I.A. BIM as A Means of End-To-End Design, Construction, And Operation. Proceedings of Universities. Investment. Construction. Real estate. 2023;13(2):252-261. (In Russ.). https://doi.org/10.21285/2227-2917-2023-2-252-261. EDN: JVYJYQ.

23. Suleymanova L.A., Obaydi A.A. Building Life Cycle Management at The Operation Stage Using Artificial Neural Network Models and Machine Learning. Bulletin of Belgorod State Technological University Named After V.G. Shukhov. 2024;3:38-46. (In Russ.). https://doi.org/10.34031/2071-7318-2024-9-3-38-46. EDN: DHJYVT.

24. Tiraturyan A.N., Elshami M.M. Determination of The Condition of Flexible Road Pavements Using Artificial Neural Network Models. In: Sovremennye zadachi teoreticheskoi mekhaniki i dinamiki. Sbornik nauchnykh trudov po materialam II Mezhdunarodnoi konferentsii s uchastiem molodykh uchenykh i studentov = Modern Problems of Theoretical Mechanics and Dynamics. Collection of Scientific Papers Based On the Materials of The II International Conference with The Participation of Young Scientists and Students. 21 April 2022, Moscow. Moscow; 2022. p. 53–57. (In Russ.). EDN: KEEYCS.


Review

For citations:


Bokov S.S., Shmatkov R.N. On asymptotic features of n-spheres. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2025;15(1):64-72. (In Russ.) https://doi.org/10.21285/2227-2917-2025-1-64-72. EDN: XSVWXG

Views: 72


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2917 (Print)
ISSN 2500-154X (Online)