Geotechnical monitoring during the life cycle of fuel and energy complex facilities on permafrost soils
https://doi.org/10.21285/2227-2917-2025-1-73-84
EDN: QOXENM
Abstract
The present article considers the specifics of constructing oil and gas production facilities in harsh climatic conditions of permafrost soils. The construction of such facilities sharply intensifies exogenous processes in permafrost soils. Therefore, due to the negative effect of these processes on the safe operation of area and linear objects in oil and gas fields, we substantiate the importance and relevance of geotechnical monitoring as a necessary condition for ensuring the safety of technosphere during the life cycle of objects erected on permafrost soils. A definition of geotechnical monitoring is given in accordance with regulatory documents; a list of governing regulatory documents is provided. The main life cycle stages of permafrost bases and foundations are described indicating the geotechnical monitoring works for each stage. In addition to the types of object state observations during geotechnical monitoring, we consider the principles of analyzing monitoring results and applying compensatory measures. The advantages of geotechnical monitoring automation, as well as the factors hindering its implementation are outlined; the prospects for further geotechnical monitoring development are identified.
About the Authors
A. V. KablukovRussian Federation
Andrei V. Kablukov, Postgraduate Student
83 Lermontov St., Irkutsk 664074
Competing Interests:
The authors declare no conflict of interests regarding the publication of this article
T. L. Dmitrieva
Russian Federation
Tatiana L. Dmitrieva, Dr. Sci. (Eng.), Associate Professor, Head of the Department of Mechanics and Resistance of Materials
83 Lermontov St., Irkutsk 664074
AuthorID: 312501
Competing Interests:
The authors declare no conflict of interests regarding the publication of this article
V. P. Yashchenko
Russian Federation
Vladimir P. Yashchenko, Cand. Sci (Eng.), Associate Professor, Associate Professor of the Department of Mechanics and Strength of Materials
83 Lermontov St., Irkutsk, 664074
AuthorID: 179786
Competing Interests:
The authors declare no conflict of interests regarding the publication of this article
References
1. Vladova A.Yu., Golofast S.L. Amplitude-Frequency Analysis of Geotechnical Monitoring Data of a Main Pipeline. Nauka i tekhnika v gazovoi promyshlennosti. 2017;1(69):88-99. (In Russ.). EDN: ZULOMR.
2. Makarycheva E.M., Ibragimov E.R., Kuznetsov Т.I., Shurshin К.Y. Using The Airborne Laser Scanning Method for Geotechnical Monitoring of Pipeline System Facilities. Science and Technologies: Oil and Oil Products Pipeline Transportation. 2019;9(1):21-31. (In Russ.). https://doi.org/10.28999/2541-9595-2019-9-1-21-31. EDN: YZFJHF.
3. Mirsayapov I.T., Koroleva I.V. Geotechnical Monitoring Features of Unique Buildings and Structures. News of the Kazan State University of Architecture and Engineering. 2013;4(26):147-154. (In Russ.). EDN: RSTDXT.
4. Gavrilov A.N., Gryaznova E.M. Express Metods in Geotechnical Monitoring. Monthly Journal on Construction and Architecture. 2010;4-5:61-66. (In Russ.). EDN: RTUJKJ.
5. Osokin A.I., Tatarinov S.V., Denisova O.O, Makarova E.V. Geotechnical Monitoring System as a Tool for Ensuring the Safety of Construction. Housing Construction. 2014;9:10-18. (In Russ.). EDN: SMVCMT.
6. Smirnov V.V., Zemenkov Y.D., Toropov S.Y., Seroshtanov I.V., Nikiforov V.N. Prospects of Development of Geotechnical Monitoring Systems. Mining Informational and Analytical Bulletin. 2014;S4:191-198. (In Russ.). EDN: SXLUPR.
7. Karpov A.A., Maltsev A.V. Relevance of Geotechnical Monitoring in Construction. In: Traditsii i innovatsii v stroitel'stve i arkhitekture: materialy 70-i yubileinoi Vserossiiskoi nauchno-tekhnicheskoi konferentsii po itogam NIR 2012 = Traditions and Innovations in Construction and Architecture: Materials of The 70th Anniversary All-Russian Scientific and Technical Conference On the Results of NIR 2012. 15–19 April 2013, Samara. Samara; 2013. p. 361–364. (In Russ.). EDN: TLLHGF.
8. Reutskih N.V., Berezhnoy M.A., Dudenko I.A. Geotechnical Monitoring for Main Pipelines in Various Types of Permafrost Soils. Nauchnyi zhurnal rossiiskogo gazovogo soobshchestva. 2016;2:22-26. (In Russ.). EDN: WBMKHR.
9. Novikov Yu.A., Kraev A.N. Geodetic Overseeing by Building Settlings Within Carrying Out Geotechnical Monitoring. Vestnik of the Siberian State University of Geosystems and Technologies. 2019;24(1):28-41. (In Russ.). https://doi.org/10.33764/2411-1759-2019-24-1-28-41. EDN: ZCHEFF.
10. Ivanova A.V., Solovieva T.A., Bugakova T.Yu. Geotechnical Monitoring of Buildings and Structures for The Control and Construction Safety. Interekspo GEO-Sibir. 2019;6(1):214-220. (In Russ.). https://doi.org/10.33764/2618-981X-2019-6-1-214-220. EDN: SSWSAM.
11. Vereshchagin A.Y., Nikolenko S.D., Sazonova S.A. Information System for Geotechnical Monitoring of Construction Objects. Informatsionnye tekhnologii v stroitel'nykh, sotsial'nykh i ekonomicheskikh sistemakh. 2021;2(24):33-39. (In Russ.). EDN: ZGOEVV.
12. Melnikov V.P., Osipov V.I., Brouchkov A.V., Alekseev A.G., Badina S.V., Berdnikov N.M. et al. Development of Geocryological Monitoring of Natural and Technical Facilities in The Regions of the Russian Federation Based On Geotechnical Monitoring Systems of Fuel and Energy Sector. Earth’s Cryosphere. 2022;26(4):3-18. (In Russ.). https://doi.org/10.15372/KZ20220401. EDN: TMLZFZ.
13. Shashkin A.G. The Basics of Geotechnical Monitoring. Inzhenernye izyskaniya. 2013;10-11:18-21. (In Russ.). EDN: RMTVBT.
14. Jiaxiao Ma, Huafu Pei, Honghu Zhu, Bin Shi, Jianhua Yin A Review of Previous Studies on The Applications of Fiber Optic Sensing Technologies in Geotechnical Monitoring. Rock Mechanics Bulletin. 2023;2(1): 1-16. https://doi.org/10.1016/j.rockmb.2022.100021.
15. Lebedev M. Automated Systems as a Part of Geotechnical Monitoring in Construction and Operation of Transport Tunnels. Procedia Engineering. 2016;165:448-454. https://doi.org/10.1016/j.proeng.2016.11.719.
16. Hongkui Gong, Kizil M.S., Zhongwei Chen, Moe Amanzadeh, Ben Yang, Aminossadati S.M. Advances in Fibre Optic Based Geotechnical Monitoring Systems for Underground Excavations. International Journal of Mining Science and Technology. 2019;29(2):229-238. https://doi.org/10.1016/j.ijmst.2018.06.007.
17. Pies M., Velicka J., Hajovsky R. Advanced IoT-Based Wireless Sensors for Remote Geotechnical Monitoring and Structural Diagnostics. IFAC-PapersOnLine. 2024;58.(9):193-198.
18. Alekseev A., Shilova L., Mefedov E. An Approach for Automatization of Geotechnical Monitoring in Cryolithozone. IOP Conference Series: Materials Science and Engineering. 2021;1083:1-7. https://doi.org/10.1088/1757-899X/1083/1/012080.
19. Di Gennaro L., Damiano E., De Cristofaro M., Netti N., Olivares L., Zona R. et al. An Innovative Geotechnical and Structural Monitoring System Based On the Use of NSHT. Smart Materials and Structures. 2022;31(6):1-12. https://doi.org/10.1088/1361-665X/ac5fc6.
20. Dorofeev N.V., Grecheneva A.V., Romanov R.V., Pankina E.S. The Selection of Parameters and Control Points in The Geotechnical Monitoring System. IOP Conference Series: Materials Science and Engineering. 2020;873:1-9. https://doi.org/10.1088/1757-899X/873/1/012030.
21. Dorofeev N.V., Pankina E.S. Decision Making in Geotechnical Monitoring Systems. IOP Conference Series: Earth and Environmental Science. 2022;988:1-6. https://doi.org/10.1088/1755-1315/988/3/032049.
22. Gairabekov I.G., Kaimov Sh. S-E., Mishieva A.T., Ibragimova E.I., Gairabekov M-B. I., Gayrabekova A.I. Geotechnical Monitoring. IOP Conference Series: Materials Science and Engineering. 2020;905:1-11. https://doi.org/10.1088/1757-899X/905/1/012026.
23. Olteanu A.K., Tomsa C., Malancu T. Geotechnical Monitoring - Reducing The Risks Related to The Construction of Infrastructure. Romanian Journal of Transport Infrastructure. 2023;12(2):1-12. https://doi.org/10.2478/rjti-2023-0014.
24. Gryaznova E. Geotechnical Monitoring to Ensure Reliability of Construction and Operation of Buildings and Structures. IOP Conference Series: Materials Science and Engineering. 2018;365(5):1-8. https://doi.org/10.1088/1757-899X/365/5/052014.
25. Gryaznova E. Piled Raft Foundation Assessment Based On Geotechnical Monitoring Results. Journal of Physics: Conference Series. 2019;1425:1-7. https://doi.org/10.1088/1742-6596/1425/1/012060.
26. Kudryavtsev S.A., Valtseva T.Yu., Gavrilov I.I., Kotenko Zh.I., Sokolova N. Geotechnical Monitoring Bearing Capacity Boring Pile Foundations of Bridge During Permafrost Degradation. Journal of Physics: Conference Series. 2021;1928:1-8. https://doi.org/10.1088/1742-6596/1928/1/012057.
27. Potapov A.I., Shikhov A.I., Dunaeva E.N. Geotechnical Monitoring of Frozen Soils: Problems and Possible Solutions. IOP Conference Series: Materials Science and Engineering. 2021;1064:1-6. https://doi.org/10.1088/1757-899X/1064/1/012038.
28. Shakurova A.F., Shakurova A.F. Use of Geotechnical Monitoring Data in The Design of the Serginsky Field Development. IOP Conference Series: Earth and Environmental Science. 2022;1021:1-9. https://doi.org/10.1088/1755-1315/1021/1/012013.
29. Struchkova G., Kapitonova T., Efremov P. Geotechnical Monitoring of Pipeline Systems Operating Under Conditions of Permafrost (Yakutia). IOP Conference Series: Earth and Evironmental Science. 2021;666:1-8. https://doi.org/10.1088/1755-1315/666/3/032088.
Review
For citations:
Kablukov A.V., Dmitrieva T.L., Yashchenko V.P. Geotechnical monitoring during the life cycle of fuel and energy complex facilities on permafrost soils. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2025;15(1):73-84. (In Russ.) https://doi.org/10.21285/2227-2917-2025-1-73-84. EDN: QOXENM