Preview

Известия вузов. Инвестиции. Строительство. Недвижимость

Расширенный поиск

Новая технология сокращения и утилизации концентратов установок обратного осмоса путем создания условий для кристаллизации малорастворимых солей в каналах аппаратов

https://doi.org/10.21285/2227-2917-2025-3-477-500

EDN: PXEBAO

Аннотация

Образование осадков малорастворимых солей на мембранах и сброс концентрата всегда были проблемами для разработки и усовершенствования установок обратного осмоса. Отложения также являются основной причиной, которая не позволяет увеличить извлечение и сократить сброс концентрата, поскольку образование труднорастворимых солей из-за пересыщения отрицательно влияет на производительность мембраны. В статье представлены результаты исследований, основанные на изучении теории образования отложений и кристаллизации, которые позволяют обеспечить эффективный контроль за образованием и ростом кристаллов. В результате была разработана новая технология, которая позволяет сократить расход концентрата в 20–100 раз без образования отложений малорастворимых солей на мембранах и без применения реагентов. Карбонат кальция и сульфат кальция осаждаются без использования реагентного умягчения за счет создания пересыщения благодаря концентрированию исходной воды в каналах аппаратов. Такая безреагентная технология разработана при помощи нанофильтрационных мембран с низкой селективностью. Представлены результаты экспериментов, которые демонстрируют условия, необходимые для начала процесса зародышеобразования в потоке концентрата, и позволяют определить скорости зародышеобразования и роста кристаллов. Представлены примеры применения новой технологии для опреснения подземных и морских вод. Технология позволяет не только сократить сброс концентрата, но и разделить его на ряд концентрированных растворов. Приведено экономическое сравнение новой разработанной технологии, используемое при обработке подземных вод.

Об авторах

А. Г. Первов
Национальный исследовательский Московский государственный строительный университет
Россия

Первов Алексей Германович, д.т.н., профессор кафедры водоснабжения и водоотведения

129337, г. Москва, Ярославское ш., 26

Author ID: 168126



Д. В. Спицов
Национальный исследовательский Московский государственный строительный университет
Россия

Спицов Дмитрий Владимирович, к.т.н., доцент, директор Института инженерно-экологического строительства и механизации

129337, г. Москва, Ярославское ш., 26

Author ID: 531559



М. И. Саид Ахмад
Национальный исследовательский Московский государственный строительный университет
Россия

Саид Ахмад Мурад Ибрагимович, аспирант

129337, г. Москва, Ярославское ш., 26

 



Список литературы

1. Pervov A. Investigation of Scaling and Inhibition Mechanisms in Reverse Osmosis Spiral Wound Elements // Membranes. 2022. Vol. 12. Iss. 9. P. 1–21. https://doi.org/10.3390/membranes12090852.

2. Xiaoqiang Wang, Ruizhu Hu, Jilin Wei, Tinglin Huang, Kaihong Li, Haitao Cheng Experimental Study on Softening High-Calcium Sulfate Reverse Osmosis Concentrate Using Induced Crystallization Method // Water. 2025. Vol. 17. Iss. 1. P. 1–16. https://doi.org/10.3390/w17010004.

3. Alrehaili O., Perreault F., Sinha S., Westerhoff P. Increasing Net Water Recovery of Reverse Osmosis with Membrane Distillation Using Natural Thermal Differentials Between Brine and Co-Located Water Sources: Impacts at Large Reclamation Facilities // Water Research. 2020. Vol. 184. P. 1–8. https://doi.org/10.1016/j.watres.2020.116134.

4. Turek M., Mitko K., Skora P., Dydo P., Jakobik-Kolon A., Warzecha A. et al. Improving the Performance of a Salt Production Plant by Using Nanofiltration as a Pretreatment // Membranes. 2022. Vol. 12. Iss. 12. P. 1– 11. https://doi.org/10.3390/membranes12121191.

5. Joy M., Boussemaere R. Investigation of Carbon Dioxide for Scale Control in Reverse Osmosis Systems // Journal of Environmental Management. 2025. Vol. 373. P. 1–15. https://doi.org/10.1016/j.jenvman.2024.123837.

6. Fumio Yokoyama, Mitsutoshi Nakajima, Sosaku Ichikawa Analysis of Calcium Sulfate Scaling Phenomena on Reverse Osmosis Membranes by Scaling-Based Flux Model // Membranes. 2022. Vol. 12. Iss. 9. P. 1–20. https://doi.org/10.3390/membranes12090894.

7. Pervov A., Htet Zaw Aung, Spitsov D. Treatment of Mine Water with Reverse Osmosis and Concentrate Processing to Recover Copper and Deposit Calcium Carbonate // Membranes. 2023. Vol. 13. Iss. 2. P. 1–20. https://doi.org/10.3390/membranes13020153.

8. Pervov A., Andrianov A. Deposition of Calcium and Magnesium from RO Concentrate By Means Of Seed Crystallization and Production of Softened Water for Technical Purposes // Desalination and Water Treatment. 2018. Vol. 110. P. 10–18. https://doi.org/10.5004/dwt.2018.21875.

9. García-Trinanes P., Chairopoulou M.A., Campos L.C. Investigating Reverse Osmosis Membrane Fouling and Scaling by Membrane Autopsy of A Bench Scale Device // Environmental Technology. 2022. Vol. 43. Iss. 21. P. 3198–3211. https://doi.org/10.1080/09593330.2021.1918262.

10. Nassr M., Dischinger S.M., Ji Yeon Lee, Gleason K.L., Molins S., Spycher N. et al. Mineral Scale Formation during Crossflow Reverse Osmosis at Constant Flux and Constant Transmembrane Pressure Conditions // Industrial & Engineering Chemistry Research. 2025. Vol. 64. Iss. 2. P. 1295–1308. https://doi.org/10.1021/acs.iecr.4c04059.

11. Ahmed M.A., Amin S., Mohamed A.A. Fouling in reverse osmosis membranes: monitoring, characterization, mitigation strategies and future directions // Heliyon. 2023. Vol. 9. Iss. 4. P. 1–27. https://doi.org/10.1016/j.heliyon.2023.e14908.

12. Popov K., Oshchepkov M., Pervov A., Golovesov V., Ryabova A., Trukhina M. et al. A Case Study of Calcium Carbonate Crystallization during Reverse Osmosis Water Desalination in Presence of Novel Fluorescent-Tagged Antiscalants // Membranes. 2022. Vol. 12. Iss. 2. P. 1–15. https://doi.org/10.3390/membranes12020194.

13. Ramirez-Garcia P., Duran-Olivencia M.A., Kellermeier M., Van Driessche A.E.S. Determining the Operational Window of Green Antiscalants: A Case Study for Calcium Sulfate // Desalination. 2022. Vol. 544. P. 1– 13. https://doi.org/10.1016/j.desal.2022.116128.

14. Кисель А.В. Опреснение морской воды Черного, Азовского и Каспийского морей методами мембранных технологий // Вестник науки. 2019. Т. 3. № 2. С. 79–94. EDN: YWLVBR.

15. Jiapeng Li, Yunhuan Chen, Hailong Wang, Xinyue Liu, Yulong Ma, Yongsheng Ren Investigation of the Effect of Phosphonate Antiscalants on the Reverse Osmosis Membranes' Permeation And Desalination Performance in Mine Wastewater Treatment Process // Journal of Water Process Engineering. 2024. Vol. 68. P. 1–12. https://doi.org/10.1016/j.jwpe.2024.106310.

16. Мосин О.В., Игнатов И. Современные технологии опреснения морской воды // Энергосбережение и водоподготовка. 2012. № 4. С. 13–19. EDN: NPSEGI.

17. Головесов В.А. Решения проблем, возникающих при использовании установок обратного осмоса в питьевом водоснабжении // Яковлевские чтения. Сб. докладов XVI Междунар. науч.-техн. конф., посвященной памяти академика РАН С.В. Яковлева (г. Москва, 15 марта 2021 г.). М., 2021. С. 48–55. EDN: GNRXUA.

18. Al-Anzi B.S., Al-Rashidi A., Abraham L., Fernandes J., Al-Sheikh A., Alhazza A. Brine Management from Desalination Plants for Salt Production Utilizing High Current Density Electrodialysis-Evaporator Hybrid System: A Case Study in Kuwait // Desalination. 2021. Vol. 498. P. 1–11. https://doi.org/10.1016/j.desal.2020.114760.

19. Pervov A., Xuan Quyet Nguyen Application of Reverse Osmosis and Nanofiltration Techniques at Municipal Drinking Water Facilities // E3S Web of Conferences. 2019. Vol. 97. P. 1–10. https://doi.org/10.1051/e3sconf/20199706004.

20. Gadalla M.A., Fatah A.A., Elazab H.A. A Novel Renewable Energy Powered Zero Liquid Discharge Scheme for RO Desalination Applications // Case Studies in Chemical and Environmental Engineering. 2023. Vol. 8. P. 1–6. https://doi.org/10.1016/j.cscee.2023.100407.

21. Попов К.И., Ощепков М.С. Современное состояние теории действия ингибиторов солеотложений // VIII научно-практическая конференция «Современные технологии водоподготовки и защиты оборудования от коррозии и накипеобразования». Сборник докладов VIII научно-практической конференции в рамках международной выставки «Химия-2019» «Экспоцентр» на Красной Пресне (г. Москва, 16–17 сентября 2019 г.). М., 2019. С. 5–11. EDN: XALSQR.

22. El Sayed M.M., Abulnour A.M.G., Tewfik S.R., Sorour M.H., Hani H.A., Shaalan H.F. Reverse Osmosis Membrane Zero Liquid Discharge for Agriculture Drainage Water Desalination: Technical, Economic, and Environmental Assessment // Membranes. 2022. Vol. 12. Iss. 10. P. 1–10. https://doi.org/10.3390/membranes12100923.

23. Cappelle M., Walker W.S., Davis T.A. Improving Desalination Recovery Using Zero Discharge Desalination (ZDD): A Process Model for Evaluating Technical Feasibility // Industrial & Engineering Chemistry Research. 2017. Vol. 56. Iss. 37. P. 10448–10460. https://doi.org/10.1021/acs.iecr.7b02472.

24. Xianhui Li, Hasson D., Semiat R., Shemer H. Intermediate Concentrate Demineralization Techniques for Enhanced Brackish Water Reverse Osmosis Water Recovery – A Review // Desalination. 2019. Vol. 466. P. 24–35. https://doi.org/10.1016/j.desal.2019.05.004.

25. Omerspahic M., Al-Jabri H., Amir Siddiqui S., Saadaoui I. Characteristics of Desalination Brine and Its Impacts on Marine Chemistry and Health, With Emphasis on the Persian/Arabian Gulf: A Review // Frontiers in Marine Science. 2022. Vol. 9. P. 1–12. https://doi.org/10.3389/fmars.2022.845113.

26. Abu Sharkh B., Al-Amoudi A.A., Farooque M., Fellows C.M., Ihm S., Lee S. et al. Seawater Desalination Concentrate – A New Frontier for Sustainable Mining of Valuable Minerals // Clean Water. 2022. Vol. 5. P. 1–17. https://doi.org/10.1038/s41545-022-00153-6.

27. Murtaza M., Alarifi S.A., Rasm M.Y., Kamal M.S., Mahmoud M., Al-Ajmi M. Single Step Calcium Sulfate Scale Removal at High Temperature Using Tetrapotassium Ethylenediaminetetraacetate with Potassium Carbonate // Scientific Reports. 2022. Vol. 12. P. 1–18. https://doi.org/10.1038/s41598-022-14385-6.

28. Yan Yan, Tao Yu, Huan Zhang, Jiayu Song, Chengtun Qu, Jinling Li et al. Co-Deposition Mechanisms of Calcium Sulfate and Calcium Carbonate Scale in Produced Water // Crystals. 2021. Vol. 11. Iss. 12. P. 1–17. https://doi.org/10.3390/cryst11121494.


Рецензия

Для цитирования:


Первов А.Г., Спицов Д.В., Саид Ахмад М.И. Новая технология сокращения и утилизации концентратов установок обратного осмоса путем создания условий для кристаллизации малорастворимых солей в каналах аппаратов. Известия вузов. Инвестиции. Строительство. Недвижимость. 2025;15(3):477-500. https://doi.org/10.21285/2227-2917-2025-3-477-500. EDN: PXEBAO

For citation:


Pervov A.G., Spitsov D.V., Saeed Ahmad M.I. A new technology for reducing and disposing of concentrates from reverse osmosis plants by creating conditions for the crystallization of insoluble salts in the channels of the devices. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2025;15(3):477-500. (In Russ.) https://doi.org/10.21285/2227-2917-2025-3-477-500. EDN: PXEBAO

Просмотров: 30


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2917 (Print)
ISSN 2500-154X (Online)