Preview

Известия вузов. Инвестиции. Строительство. Недвижимость

Расширенный поиск

Применение искусственного интеллекта и машинного обучения для BIM

https://doi.org/10.21285/2227-2917-2025-3-586-599

EDN: SCUGCI

Аннотация

Контроль качества является неотъемлемым компонентом процессов информационного моделирования зданий в архитектурном проектировании. На каждом этапе жизненного цикла объекта требуется систематический сбор и мониторинг ключевых показателей. Технология BIM, основанная на интенсивном использовании данных, предполагает применение сложных вычислительных методов, таких как обработка изображений и анализ больших массивов информации. В этом контексте искусственный интеллект и машинное обучение доказали свою эффективность в автоматизации задач и извлечении ценных инсайтов как в России, так и за рубежом. Эти технологии также позволяют прогнозировать необходимость технического обслуживания и контроля качества с высокой точностью, определяя оптимальные временные и пространственные параметры. В данной статье проводится анализ современных подходов к интеграции искусственного интеллекта и машинного обучения в архитектурном проектировании, а также обсуждаются перспективы и вызовы, связанные с внедрением этих технологий в архитектурное проектирование, строительство и ландшафтный дизайн. Цель исследования — сформировать комплексное представление о текущих потребностях архитектуры и отрасли строительства и влиянии искусственного интеллекта и машинного обучения на их развитие, а также определить направления для дальнейших научных изысканий. Особое внимание уделяется оперативным системам, способным решать сложные задачи и обучаться на основе данных, что обеспечивает высокую точность в выявлении закономерностей и прогнозировании жизненного цикла объектов, особенно при обработке значительных объемов информации.

 

Об авторах

П. A. Пичугов
Южно-Уральский государственный университет
Россия

Пичугов Павел Алексеевич, аспирант

454080, г. Челябинск, пр. Ленина, 76



С. Г. Шабиев
Южно-Уральский государственный университет
Россия

Шабиев Салават Галиевич, доктор архитектуры, профессор, заведующий кафедрой архитектуры

454080, г. Челябинск, пр. Ленина, 76

Author ID: 476175



Список литературы

1. Костюнина Т.Н. Технологии искусственного интеллекта в задачах BIM // BIM-моделирование в задачах строительства и архитектуры. Материалы II Международной научно-практической конференции (г. Санкт-Петербург, 15–17 мая 2019 г.). СПб, 2019. С. 80–85. https://doi.org/10.23968/BIMAC.2019.014. EDN: KAYEKZ.

2. Anjum A., Hrairi M., Aabid A., Yatim N., Ali M. Civil Structural Health Monitoring and Machine Learning: A Comprehensive Review // Fracture and Structural Integrity. 2024. Vol. 18. Iss. 69. P. 43–59. https://doi.org/10.3221/IGF-ESIS.69.04.

3. Bishop Ch.M. Pattern Recognition and Machine Learning. Springer: New York City, 2006. 746 p.

4. Mannino A., Claudio Dejaco M., Re Cecconi F. Building Information Modelling and Internet of Things Integration for Facility Management – Literature Review and Future Needs // Applied Sciences. 2021. Vol. 11. Iss. 7. P. 1–25. https://doi.org/10.3390/app11073062.

5. Alavi H., Gordo-Gregorio P., Forcada N., Bayramova A., Edwards D.J. AI-Driven BIM Integration for Optimizing Healthcare Facility Design // Buildings. 2024. Vol. 14. Iss. 8. P. 1–15. https://doi.org/10.3390/buildings14082354.

6. Halawa F., Madathil S.C., Khasawneh M.T. Integrated Framework of Process Mining and Simulation–Optimization for Pod Structured Clinical Layout Design // Expert Systems with Applications. 2021. Vol. 185. P. 1–17. https://doi.org/10.1016/j.eswa.2021.115696.

7. Rakha T., Gorodetsky A. Review of Unmanned Aerial System (UAS) Applications in The Built Environment: Towards Automated Building Inspection Procedures Using Drones // Automation in Construction. 2018. Vol. 93. P. 252–264. https://doi.org/10.1016/j.autcon.2018.05.002.

8. Alizadehsalehi S., Hadavi A., Huang J.C. From BIM to Extended Reality in AEC Industry // Automation in Construction. 2020. Vol. 116. P. 1–13. https://doi.org/10.1016/j.autcon.2020.103254.

9. Ammar A., Nassereddine H., Abdulbaky N., Aboukansour A., Tannoury J., Urban H. et al. Digital Twins in the Construction Industry: A Perspective of Practitioners and Building Authority // Frontiers in Built Environment. 2022. Vol. 8. P. 1–23. https://doi.org/10.3389/fbuil.2022.834671.

10. Gal R., Alaluf Yu., Atzmon Yu., Patashnik Or, Bermano A.H., Chechik G. et al. An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion // ICLR. 2023. P. 1–31. https://doi.org/10.48550/arXiv.2208.01618.

11. Radford A., Jong Wook Kim, Hallacy Ch., Ramesh A., Goh G., Agarwal S. et al. Learning Transferable Visual Models from Natural Language Supervision // Proceedings of the 38th International Conference on Machine Learning. 2021. Vol. 139. P. 1–16.

12. Ramesh A., Pavlov M., Goh G., Gray S., Voss Ch., Radford A. et al. Zero-Shot Text-to-Image Generation // PMLR. 2021. P. 8821–8831. https://doi.org/10.48550/arXiv.2102.12092.

13. Ramesh A., Dhariwal P., Nichol A., Chu C., Chen M. Hierarchical Text-Conditional Image Generation with CLIP Latents // Cornell University Arxiv. 2022. Vol. 1. Iss. 2. P. 1–27. https://doi.org/10.48550/arXiv.2204.06125.

14. Seneviratne S., Senanayake D., Rasnayaka S., Vidanaarachchi R., Thompson J. DALLE-URBAN: Capturing The Urban Design Expertise of Large Text to Image Transformers // 2022 International Conference on Digital Image Computing: Techniques and Applications. 2022. P. 1–9. https://doi.org/10.1109/DICTA56598.2022.10034603.

15. Paananen V., Oppenlaender J., Aku Visuri Using Text-to-Image Generation for Architectural Design Ideation // International Journal of Architectural Computing. 2024. Vol. 22. Iss. 3. P. 458–474. https://doi.org/10.1177/14780771231222783.

16. Ploennigs J., Berger M. AI Art in Architecture // AI in Civil Engineering. 2023. Vol. 2. P. 1–11. https://doi.org/10.1007/s43503-023-00018-y.

17. Carlini N., Hayes J., Nasr M., Jagielski M., Sehwag V., Tramèr F. et al. Extracting Training Data from Diffusion Models // 32nd USENIX Security Symposium. 2023. P. 5253–5270. https://doi.org/10.48550/arXiv.2301.13188.

18. Ruiz N., Li Yu., Jampani V., Pritch Y., Rubinstein M., Aberman K. DreamBooth: Fine Tuning Text-toImage Diffusion Models for Subject-Driven Generation // Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023. P. 22500–22510. https://doi.org/10.48550/arXiv.2208.12242.

19. Бамбетова К.В., Кабжихов А.А. Преимущества использования искусственного интеллекта в сфере строительства // Вопросы науки и образования. 2021. № 7. С. 32–34. EDN: WUYZDS.

20. Колчин В.Н. Специфика применения технологии «искусственного интеллекта» в строительстве // Инновации и инвестиции. 2022. № 3. С. 250–253. EDN: JJLECU.

21. Аманаков А.Х., Мурадова А.О., Сейдов А.И. Роль искусственного интеллекта в архитектурном проектировании: современные тенденции и перспективы // Вестник науки. 2024. Т. 2. № 4. С. 616–619. EDN: HCAAXA.

22. Жилин В.В., Сафарьян О.А. Искусственный интеллект в системах хранения данных // Вестник Донского государственного технического университета. 2020. Т. 20. № 2. С. 196–200. https://doi.org/10.23947/1992-5980-2020-20-2-196-200. EDN: JIQSQI.

23. Салех М.С. Внедрение цифровых методов на различных этапах архитектурного проектирования // Архитектура и современные информационные технологии. 2021. № 1. С. 268–278. https://doi.org/10.24412/1998-4839-2021-1-268-278. EDN: SKZHER.

24. Касьянов Н.В. Архитектура в контексте развития искусственного интеллекта // Современная архитектура мира. 2020. № 2. С. 23–48. https://doi.org/10.25995/NIITIAG.2020.15.2.002. EDN: FAWSUP.

25. Rombach R., Blattmann A., Lorenz D., Esser P., Ommer B. High-Resolution Image Synthesis with Latent Diffusion Models // 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022. P. 10674–10685. https://doi.org/10.1109/CVPR52688.2022.01042.

26. Xiang Lisa Li, Percy Liang Prefix-Tuning: Optimizing Continuous Prompts for Generation // Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. 2021. Vol. 1. P. 4582–4597. https://doi.org/10.18653/v1/2021.acl-long.353.

27. Huang Weixin., Zheng Hao Recognition and Generation of Architectural Drawings Using Machine Learning // Proceedings of the 38th Annual Conference of the Association for Computer-Aided Design in Architecture. 2018. P. 18–20. https://doi.org/10.52842/conf.acadia.

28. Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu Semantic Image Synthesis with SpatiallyAdaptive Normalization // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. P. 2332–2341. https://doi.org/10.1109/CVPR.2019.00244.

29. Fürst A., Rumetshofer E., Tran V.T., Ramsauer H., Tang F., Lehner J. et al. CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP // ICLR 2022. 2022. P. 1–45.


Рецензия

Для цитирования:


Пичугов П.A., Шабиев С.Г. Применение искусственного интеллекта и машинного обучения для BIM. Известия вузов. Инвестиции. Строительство. Недвижимость. 2025;15(3):586-599. https://doi.org/10.21285/2227-2917-2025-3-586-599. EDN: SCUGCI

For citation:


Pichugov P.A., Shabiev S.G. Application of artificial intelligence and machine learning for BIM. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2025;15(3):586-599. (In Russ.) https://doi.org/10.21285/2227-2917-2025-3-586-599. EDN: SCUGCI

Просмотров: 15


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2917 (Print)
ISSN 2500-154X (Online)