Application of artificial intelligence and machine learning for BIM
https://doi.org/10.21285/2227-2917-2025-3-586-599
EDN: SCUGCI
Abstract
Quality control is an integral component of building information modeling processes in architectural design. At each stage of the facility's life cycle, systematic collection and monitoring of key indicators is required. BIM technology, based on the intensive use of data, involves the use of complex computational methods such as image processing and analysis of large amounts of information. In this context, artificial intelligence and machine learning have proven effective in automating tasks and extracting valuable insights both in Russia and abroad. These technologies also make it possible to predict the need for maintenance and quality control with high accuracy, determining optimal time and spatial parameters. This article analyzes modern approaches to the integration of artificial intelligence and machine learning in architectural design, and discusses the prospects and challenges associated with the implementation of these technologies in architectural design, construction and landscape design. The purpose of the study is to form a comprehensive understanding of the current needs of architecture and the construction industry and the impact of artificial intelligence and machine learning on their development, as well as to identify areas for further scientific research. Special attention is paid to operational systems capable of solving complex tasks and learning from data, which ensures high accuracy in identifying patterns and predicting the life cycle of objects, especially when processing significant amounts of information.
About the Authors
P. A. PichugovRussian Federation
Pavel A. Pichugov, Postgraduate Student
76 Lenin Ave., Chelyabinsk 454080
S. G. Shabiev
Russian Federation
Salavat G. Shabiev, Doctor of Architecture, Professor, Head of the Department of Architecture
76 Lenin Ave., Chelyabinsk 454080
Author ID: 476175
References
1. Kostyunina T.N. Artificial Intelligence Technologies in BIM Tasks. In: BIM-modelirovanie v zadachakh stroitel'stva i arkhitektury. Materialy II Mezhdunarodnoi nauchno-prakticheskoi konferentsii = BIM Modeling in Construction and Architecture. Proceedings of The II International Scientific and Practical Conference. 15–17 May 2019, Saint Petersburg. Saint Petersburg; 2019. p. 80–85. (In Russ.). https://doi.org/10.23968/BIMAC.2019.014. EDN: KAYEKZ.
2. Anjum A., Hrairi M., Aabid A., Yatim N., Ali M. Civil Structural Health Monitoring and Machine Learning: A Comprehensive Review. Fracture and Structural Integrity. 2024;18(69):43-59. https://doi.org/10.3221/IGFESIS.69.04.
3. Bishop Ch.M. Pattern Recognition and Machine Learning. Springer: New York City, 2006. 746 p.
4. Mannino A., Claudio Dejaco M., Re Cecconi F. Building Information Modelling and Internet of Things Integration for Facility Management – Literature Review and Future Needs. Applied Sciences. 2021;11(7):1-25. https://doi.org/10.3390/app11073062.
5. Alavi H., Gordo-Gregorio P., Forcada N., Bayramova A., Edwards D.J. AI-Driven BIM Integration for Optimizing Healthcare Facility Design. Buildings. 2024;14(8):1-15. https://doi.org/10.3390/buildings14082354.
6. Halawa F., Madathil S.C., Khasawneh M.T. Integrated Framework of Process Mining and Simulation– Optimization for Pod Structured Clinical Layout Design. Expert Systems with Applications. 2021;185:1-17. https://doi.org/10.1016/j.eswa.2021.115696.
7. Rakha T., Gorodetsky A. Review of Unmanned Aerial System (UAS) Applications in The Built Environment: Towards Automated Building Inspection Procedures Using Drones. Automation in Construction. 2018;93:252-264. https://doi.org/10.1016/j.autcon.2018.05.002.
8. Alizadehsalehi S., Hadavi A., Huang J.C. From BIM to Extended Reality in AEC Industry. Automation in Construction. 2020;116:1-13. https://doi.org/10.1016/j.autcon.2020.103254.
9. Ammar A., Nassereddine H., Abdulbaky N., Aboukansour A., Tannoury J., Urban H. et al. Digital Twins in the Construction Industry: A Perspective of Practitioners and Building Authority. Frontiers in Built Environment. 2022;8:1-23. https://doi.org/10.3389/fbuil.2022.834671.
10. Gal R., Alaluf Yu., Atzmon Yu., Patashnik Or, Bermano A.H., Chechik G. et al. An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion. ICLR. 2023:1-31. https://doi.org/10.48550/arXiv.2208.01618.
11. Radford A., Jong Wook Kim, Hallacy Ch., Ramesh A., Goh G., Agarwal S. et al. Learning Transferable Visual Models from Natural Language Supervision. Proceedings of the 38th International Conference on Machine Learning. 2021;139:1-16.
12. Ramesh A., Pavlov M., Goh G., Gray S., Voss Ch., Radford A. et al. Zero-Shot Text-to-Image Generation. PMLR. 2021:8821-8831. https://doi.org/10.48550/arXiv.2102.12092.
13. Ramesh A., Dhariwal P., Nichol A., Chu C., Chen M. Hierarchical Text-Conditional Image Generation with CLIP Latents. Cornell University Arxiv. 2022;1(2):1-27. https://doi.org/10.48550/arXiv.2204.06125.
14. Seneviratne S., Senanayake D., Rasnayaka S., Vidanaarachchi R., Thompson J. DALLE-URBAN: Capturing The Urban Design Expertise of Large Text to Image Transformers. 2022 International Conference on Digital Image Computing: Techniques and Applications. 2022:1-9. https://doi.org/10.1109/DICTA56598.2022.10034603.
15. Paananen V., Oppenlaender J., Aku Visuri Using Text-to-Image Generation for Architectural Design Ideation. International Journal of Architectural Computing. 2024;22(3):458-474. https://doi.org/10.1177/14780771231222783.
16. Ploennigs J., Berger M. AI Art in Architecture. AI in Civil Engineering. 2023;2:1-11. https://doi.org/10.1007/s43503-023-00018-y.
17. Carlini N., Hayes J., Nasr M., Jagielski M., Sehwag V., Tramèr F. et al. Extracting Training Data from Diffusion Models. 32nd USENIX Security Symposium. 2023:5253-5270. https://doi.org/10.48550/arXiv.2301.13188.
18. Ruiz N., Li Yu., Jampani V., Pritch Y., Rubinstein M., Aberman K. DreamBooth: Fine Tuning Text-toImage Diffusion Models for Subject-Driven Generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023:22500-22510. https://doi.org/10.48550/arXiv.2208.12242.
19. Bambetova K.V., Kabzhikhov A.A. Benefits of Using Artificial Intelligence in Construction. Voprosy nauki i obrazovaniya. 2021;7:32-34. (In Russ.). EDN: WUYZDS.
20. Kolchin V.N. The Specifics of the Use of “Artificial Intelligence” Technology in Construction. Innovation & Investment. 2022;3:250-253. (In Russ.). EDN: JJLECU.
21. Amanakov A.Kh., Muradova A.O., Seidov A.I. Role of Artificial Intelligence in Architectural Design: Current Trends and Prospects. Vestnik nauki. 2024;2(4):616-619. (In Russ.). EDN: HCAAXA.
22. Zhilin V.V., Safaryan O.A. Artificial Intelligence in Data Storage Systems. Vestnik of Don State Technical University. 2020;20(2):196-200. (In Russ.). https://doi.org/10.23947/1992-5980-2020-20-2-196-200. EDN: JIQSQI.
23. Saleh M.S. Implementation of Digital Methods at Different Stages of Architectural Design. Architecture and Modern Information Technologies. 2021;1:268-278. (In Russ.). https://doi.org/10.24412/1998-4839-2021-1-268-278. EDN: SKZHER.
24. Kasyanov N.V. Architecture in The Context of the Development of Artificial Intelligence. Sovremennaya arkhitektura mira. 2020;2:23-48. (In Russ.). https://doi.org/10.25995/NIITIAG.2020.15.2.002. EDN: FAWSUP.
25. Rombach R., Blattmann A., Lorenz D., Esser P., Ommer B. High-Resolution Image Synthesis with Latent Diffusion Models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022:10674- 10685. https://doi.org/10.1109/CVPR52688.2022.01042.
26. Xiang Lisa Li, Percy Liang Prefix-Tuning: Optimizing Continuous Prompts for Generation. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. 2021;1:4582–4597. https://doi.org/10.18653/v1/2021.acl-long.353.
27. Huang Weixin., Zheng Hao Recognition and Generation of Architectural Drawings Using Machine Learning. Proceedings of the 38th Annual Conference of the Association for Computer-Aided Design in Architecture. 2018:18-20. https://doi.org/10.52842/conf.acadia.
28. Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu Semantic Image Synthesis with SpatiallyAdaptive Normalization. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:2332-2341. https://doi.org/10.1109/CVPR.2019.00244.
29. Fürst A., Rumetshofer E., Tran V.T., Ramsauer H., Tang F., Lehner J. et al. CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP. ICLR 2022. 2022:1-45.
Review
For citations:
Pichugov P.A., Shabiev S.G. Application of artificial intelligence and machine learning for BIM. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2025;15(3):586-599. (In Russ.) https://doi.org/10.21285/2227-2917-2025-3-586-599. EDN: SCUGCI