Preview

Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost

Advanced search

Inverse dynamics method in properties estimation of residual stiffness of multi-story buildings

https://doi.org/10.21285/2227-2917-2023-3-545-554

EDN: HCSPBI

Abstract

The present paper considers methods and algorithms for determining the values of horizontal stiffness of multi-story buildings based on experimental laser measurements of their natural vibrations. The developments findings are used in determining the residual stiffness of various structures in a certain operation period, subjected to intensive dynamic loading. No need for a close inspection of buildings associated with the inevitable dismantling of enclosures and emptying of the buildings is considered as an advantage of such methods for determining the stiffness parameters of buildings. Direct method for determining the horizontal stiffness of buildings by means of specified displacements and corresponding forces in their elements implies fixing of tension elements in specified nodes – mass centers of structures. However, in some cases, they fail to be implemented. The suggested approach demonstrates its potential in the inspection of a large residential area consistent of buildings under different operating conditions, thus requiring the development of an action plan to ensure the functionality of the structures. In addition, the paper demonstrates that using the dynamic low-size models in the estimation of stiffness parameters implies determining the principles of forming the types of such models.

About the Authors

V. I. Sobolev
Irkutsk National Research Technical University
Russian Federation

Vladimir I. Sobolev, Dr. Sci (Eng.), Professor, Professor of the Department of Mechanics and Resistance of Materials

83 Lermontov St., Irkutsk, 664074



I. V. Sobolev
Irkutsk National Research Technical University
Russian Federation

Ivan V. Sobolev, Engineer of the Department of Mechanics and Resistance of Materials

83 Lermontov St., Irkutsk, 664074



D. A. Karmazinov
Irkutsk National Research Technical University
Russian Federation

Danil A. Karmazinov, Postgraduate Student

83 Lermontov St., Irkutsk, 664074



References

1. Adams R.D., Cawley R., Pye C.J., Stone B.J. A Vibration technique for non-destructively assessing the integrity of structures. Institution of mechanical engineers. 1978;20(2). https://doi.org/10.1243/JMES_JOUR_1978_020_016_02.

2. Faghmous J.H., Kumar V. A Big Data guide to understanding climate change: the case for theoryguided data science. Big Data. 2014;2(3):3155-163. https://doi.org/10.1089/big.2014.0026.

3. Quinn J., Frias-Martinez V., Subramanian L. Computational sustainability and artificial intelligence in the developing world. AI Magazine. 2014;35(3):36-47. https://doi.org/10.1609/aimag.v35i3.2529.

4. Azimi J., Fern X., Fern A. Budgeted optimization with constrained experiments. Journal Artificial Intelli-gence Research. 2016;56:119-152. https://doi.org/10.1613/jair.4896.

5. Cawley R., Adams R.D. The location of defects in structures from measurements of natural frequencies. Institution of mechanical engineers. 1979;14(2). https://doi.org/10.1243/03093247V142049.

6. Berman A. System identification of structural dynamic models – theoretical and practical bounds. In: 25th Structures, Structural Dynamics and Materials Conference (Palm Springs, 14–16 May 1984,). American Insti-tute of Aeronautics and Astronautics; 1984. p. 123–129. https://doi.org/10.2514/6.1984-929.

7. Sobolev V.I., Pinus B.I. Determination of parameters of residual rigidity of defective buildings based on laser images of vibrations and solving the inverse problem of dynamics. Vestnik Vostochno-Sibirskogo gosudarstvennogo universiteta tekhnologii i upravleniya. 2019;1:55-62. (In Russ.). EDN: VXOMWF.

8. Amel'kin V.V. Differential equations in applications. Moscow: Nauka; 1987. 160 p. (In Russ.).

9. Klaf R., Penzien Dzh. Dynamics of structures. Moscow: Stroiizdat; 1979. 319 p. (In Russ.).

10. Pinus B.I., Morgaev D.E. Assessment of the residual resource of seismic resistance of buildings of the 1-335 ks series in the city of Irkutsk. Tez. dokladov V Rossiiskoi Natsional'noi konferentsii po seismostoikomu stroitel'stvu i seismicheskomu raionirovaniyu s mezhdunarodnym uchastiem = Abstracts of the V Russian National Conference on Earthquake-Resistant Construction and Seismic Zoning with International Participation. Moscow: GUP TsNIISK im. V.A. Kucherenko; 2003. 81 p. (In Russ.).

11. Sobolev V.I. Calculation of multi-storey buildings, various structural systems for horizontal seismic impact, taking into account spatial deformation. In: Matematicheskoe modeli-rovanie v mekhanike sploshnykh sred na osnove metodov granichnykh i konechnykh elementov: Trudy XVIII Mezhdunarodnoi konferentsii = Mathematical modeling in continuum mechanics based on boundary and finite element methods: Proceedings of the XVIII International Conference. Saint Peterburg: NIIKh SPbGU; 2000. Vol. 1. p. 217. (In Russ.).

12. Argyris J.H., Boni V., Hinderlang V. Finite element analysis of two- and three dimensional elasto- plastic frames – the natural approach // Comp. Meth. Appl. Mech. 1982. Vol. 35. No 2. P. 221–248.

13. Aizenberg Ya.M. Development of concepts and norms of antiseismic design, TSNIISK, SSC. Moscow: Stroitel'stvo; 1997. 73 p. (In Russ.).

14. Davies E.B., Gladwell G.M.L., Leydold J.S., Peter F. Discrete nodal domain theorems. Linear Algebra Appl. 2001;336:51-60. https://doi.org/10.1016/S0024-3795(01)00313-5.

15. Ikramov Kh.D. The asymmetric problem of eigenvalues. Numerical methods. Moscow: Nauka; 1991. 240 p. (In Russ.).

16. Koloushek V. Dynamics of building structures. Moscow: PH of literature on construction; 1965. 632 p. (In Russ.).

17. Farlou S With Partial differential equations for scientists and engineers. Moscow: Mir; 1985. 384 p. (In Russ.).

18. Belokobil’skiy S.V., Eliseev S.V., Kashuba V.B. Impedance approaches as an estimation form for dynamical properties of mechanical oscillation systems in structural mathematical modelling. Sistemy. Metody. Tekhnologii = Systems. Methods. Technologies. 2015;4:7-15. (In Russ.).

19. Eliseev S.V., Kovyrshin S.V., Bol'shakov R.S. Construction features of elastic elements compacts in mechanical oscillation systems. Interactions with system selements and connection forms. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie = Modern technologies. System analysis. Modeling. 2012;4:61-70. (In Russ.). EDN: PJKJWT.

20. Krylov A.N. On some differential equations of mathematical physics that have applications in technical matters. Moscow–Leningrad: Gostekhizdat; 1950. (In Russ.).

21. Malyshkin A.P., Esipov A.V. Experimental and theoretical studies of steel roof trusses of the athletic arena in Tyumen. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Stroitel'stvo i arkhitektura. 2015;2:105-115. (In Russ.). https://doi.org/10.15593/2224-9826/2015.2.08. EDN: TZUEPV.

22. Nazarov Y.P., Gorodetsky A.S., Simbirkin V.N. About a problem of survivability support of building structures subjected to emergency actions. Stroitel'naya mekhanika i raschet sooruzhenii = Structural Mechanics and Analysis of Constructions. 2009;4:5-8. (In Russ.). EDN: KOZYWJ.

23. Fu G., Frangopol D. Balancing weight, system reliability and redundancy in a multiobjective optimization framework. Structural Safety. 1990;7(2-4):165-175.

24. Sobolev V.I., Pinus B.I., Zen'kov E.V. Comprehensive assessment of the accumulation of building defects using laser vibration meters. Resursosberegayushchie tekhnologii v stroitel'stve i zhilishchno- kommunal'nom khozyaistve: materialy Vserossiiskoi nauchno-prakticheskoi konferentsii = Resourcesaving technologies in construction and housing and communal services: materials of the All-Russian Scientific and Practical Conference. 07 November 2018, Irkutsk. Irkutsk: Irkutsk national research tech- nical university; 2018. p. 17-21. (In Russ.). EDN: SIYKMA.

25. Bokarev S.A., Zhunev K.O., Usoltsev A.M. Stress-strain behavior of welded joints in railway girders. Magazine of Civil Engineering. 2018;8:119-129. https://doi.org/10.18720/MCE.84.12.

26. Konin D.V. Rigidity of partially concreted steel beams and steel-reinforced floors. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta = Journal of construction and architecture. 2023;25(3):128-142. (In Russ.). https://doi.org/10.31675/1607-1859-2023-25-3-128-142. EDN: YHUYZS.

27. Rybakova L.Y. Calculating methods analysis of the stress-strain state of welded joints. Traditsii i innovatsii v stroitel'stve i arkhitekture: sbornik statei 77-oi Vserossiiskoi nauchno-tekhnicheskoi konfer- entsii = Traditions and innovations in Construction and architecture: Collection of articles of the 77th All- Russian Scientific and Technical Conference. 26-30 October 2020, Samara. Samara: Samara state technical university; 2020. p. 69-74. (In Russ.). EDN: XPATTC.

28. Golodnov A.I., Balashova O.S. To determine the residual stress state in the welded elements of the box profile. Sovremennoe promyshlennoe i grazhdanskoe stroitel'stvo. 2010;6(3):153-158. (In Russ.).


Review

For citations:


Sobolev V.I., Sobolev I.V., Karmazinov D.A. Inverse dynamics method in properties estimation of residual stiffness of multi-story buildings. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2023;13(3):545-554. (In Russ.) https://doi.org/10.21285/2227-2917-2023-3-545-554. EDN: HCSPBI

Views: 98


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2917 (Print)
ISSN 2500-154X (Online)