Preview

Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost

Advanced search

Conceptual modeling of a forecasting system for hazardous waste emergencies

https://doi.org/10.21285/2227-2917-2023-4-702-715

EDN: QRLFTM

Abstract

The relevance of the study consists in the problem of incompletely regulated legal relations in the field of emergency forecasting. This problem represents an important factor and condition for the unpredictable and uncontrolled generation and development of environmental hazards, threats and risks, as well as contributes to the preconditions for the occurrence of natural and technogenic emergencies. The study aims to systematically assess and develop ways to solve the problems of preventing unfavorable technospheric situations in municipal territories in the context of an ever-increasing technogenic impact of production and consumption wastes. The study emphasises the search for methods, organisational-technical measures and best available technologies for preventing natural and technogenic emergencies, as well as their socio-economic, natural-resource, environmental and other adverse consequences. A system analysis of quantitative and qualitative indicators, parameters, factors and conditions, affecting events and formation processes of environmental hazard sources, represented by end-of-life, spent, utilised construction and other products, formed in the process of human activity and life support of settlements, is carried out. Based on the results of a joint research, the authors made an attempt to form an idealised conceptual model of a resource-saving system for an environmentally safe management of life support production and consumption wastes in technospheric territories.

About the Authors

E. S. Tshovrebov
All-Russian Scientific Research Institute for Civil Defence and Emergencies of the EMERCOM of Russia (Federal Science and High Technology Center)
Russian Federation

Eduard S. Tshovrebov, Сand. Sci. (Econ.), Associate Professor

7 Daviydkovskaya St., Moscow 121352

Author ID: 470064



S. Z. Kalaeva
Yaroslavl State Technical University
Russian Federation

Sahiba Z. Kalaeva, Dr Sci. (Tech.), Head of the Department of Labor and Nature Protection

88 Moskovsky Prospekt, Yaroslavl 150023



V. B. Petropavlovskaya
Tver State Technical University
Russian Federation

Victoria B. Petropavlovskaya, Dr Sci. (Tech), Professor of  the Department of Production of Building Products and Structures

22 Embankment Af. Nikitina, Tver 170026

Author ID: 407660



F. Kh. Niyazgulov
Russian University of Transport
Russian Federation

Filyuz Kh. Niyazgulov, Senior Lecturer of the Department of Geodesy, Geoinformatics and Navigation

9 page 9 Obraztsova St., Moscow 127994

Author ID: 993100



References

1. Oltyan I.Y., Arefyeva E.V., Kotosonov A.S. Remote assessment of an integrated emergency risk index. International Conference on Construction, Architecture and Technosphere Safety (ICCATS 2020). IOP Con-ference Series: Materials Science and Engineering. 06–12 September 2020, Sochi. IOP Publishing Ltd; 2020. Vol. 962 (4). р. 042053. https://doi.org/10.1088/1757-899X/962/4/042053. EDN: XJGGYQ.

2. Aref'eva E.V., Oltyan I.Yu. The role of international cooperation for better disaster risk forecast in the context of ongoing climate change. Nauchnye i obrazovatel'nye problemy grazhdanskoi zashchity. 2017;2:7-9. (In Russ). EDN: ZBGXSB.

3. Lapidus A.A., Makarov A.N. Application of a risk-based approach when performing the functions of construction control of a technical customer. Vestnik MGSU = Bulletin of MGSU. 2022;17(2):232-241. (In Russ.). https://doi.org/10.22227/1997-0935.2022.2.232-241. EDN: ARPPKP.

4. Faleev M.I., Oltyan I.Yu., Arefyeva E.V., Bolgov M.V. Methodology and technology of remote risk assess- ment. Problemy analiza riska = Issues of risk analysis. 2018;15(4):6-19. (In Russ.). EDN: YCNCAP.

5. Akimov V.A., Oltyan I.Yu., Ivanova E.O. Natural, anthropogenic and biological and social emergency situations ranking technique by catastrophic degree. Tehnologii grazhdanskoi bezopasnosti = Civil security technology. 2021;18(1):4-7. (In Russ.). https://doi.org/10.54234/CST.19968493.2021.18.1.67.1.4 EDN: IOGGXC.

6. Lomakin M.I., Dokukin A.V., Moshkov V.B., Oltyan I.Yu., Niyazova Yu.M. Emergency Situation Damage Assessment in the Conditions of Incomplete Data. Tehnologii grazhdanskoi bezopasnosti = Civil security technology. 2022;19(3):32-36. (In Russ.). https://doi.org/10.54234/CST.19968493.2022.19.3.73. EDN: ZUSCWO.

7. Stas’ G.V., Chistyakov Ya.V.. Kalaeva S.Z., Muratova K.M, O the question of environmental protection from fine dust of mining enterprisesю. Izvestija Tulskogo gosudarstvennogo universiteta. Nauki o zemle. 2019;1:92-109. (In Russ). EDN: OSZESO.

8. Petropavlovskii K., Ratkevich E., Novichenkova T., Petropavlovskaya V. The use of technogenic carbon in gypsum compositions for green building. In: Environmentally Sustainable Cities and Settlements: Problems and Solutions: XII International Scientific and Practical Forum (ESCP-2023). E3S Web of Conferences. 2023;403:03013. https://doi.org/10.1051/e3sconf/202340303013.

9. Petropavlovskaya V.B., Artamonova S.V., Shchipanskaya E.O., Ratkevich E.A., Petropavlovskii K.S. Environmental management in ash and slag waste management in Russia. In: Ensuring sustainable develop- ment: agriculture, ecology and earth science: International scientific and practical conference (AEES-2021). IOP Conference Series: Earth and Environmental Science. 27-29 October 2021, London (Virtual). London: IOP Publishing Ltd; 2022. Vol. 1010 (1). p. 012135. https://doi.org/10.1088/1755-1315/1010/1/012135. EDN: WEUBVX.

10. Suzdaleva A.L. Ecological globalistics and sustainable development at the stage of technogenic transformation of the biosphere. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2020;1:6-11. (In Russ). https://doi.org/10.31857/S0869780920010196. EDN: HKJMPL.

11. Goldstein B., Rasmussen F. LCA of buildings and the built environment. In: M. Hauschild, R. Rosenbaum, S. Olsen (Eds.). Life Cycle Assessment. Theory and Practice. Cham: Springer; 2018. p. 695-722. https://doi.org/10.1007/978-3-319-56475-3_28.

12. Telichenko V.I., Roitman V.M., Slesarev M.Yu., Shcherbina E.V. Fundamentals of integrated construction safety. Moscow: PH of the Association of construction universities; 2016. 168 p. (In Russ.). EDN: SAQAFF.

13. Grafkina M.V., Potapov A.D. The analysis of ecologic safety of building systems is a nature-technical complex (theoretical basis). Vestnik MGSU = Vestnik MGSU. 2008;1:23-28. (In Russ). EDN: MVHAJP.

14. Telichenko V.I., Benuzh A.A., Glotova E.P. Environmental safety of construction in russia: reality and prospects. Fundamental, exploratory and applied research of the RAASN on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2021. Collection of scientific papers of the RAASN. Russian Academy of Architecture and Construction Sciences. Moscow, 2022. pp. 441-449. (In Russ).

15. Vladimirov S.N. Problems of waste processing in the construction industry. Sistemnye tekhnologii. 2016;2:101-105. EDN: WCNXNV.

16. Lunev G.G. Development of methodology for the integrated use of secondary construction resources. Moscow: LLC "Nauchtekhizdat"; 2019. 284 p.

17. Oleynik P.P., Chulkov V.O. Waste management, construction and demolition. Otkhody i resursy = Russian Journal of Resources, Conservation and Recycling. 2016;3(1):5. https://doi.org/10.15862/03RRO116. EDN: XBGYPZ.

18. Volynkina E.P. Analysis of the state and problems of processing technogenic waste in Russia. Vestnik Sibirskogo gosudarstvennogo industrial'nogo universiteta = Bulletin of the Siberian state industrial university. 2017;2:43-49. EDN: YTOUCP.

19. Elgizawy S., El-Haggar S., Nassar K. Slum Development Using Zero Waste Concepts: Construction Waste Case Study. Procedia Engineering. 2016;145:1306-1313. https://doi.org/10.1016/j.proeng.2016.04.168.

20. Ehresman T.G, Okereke C. Environmental justice and conceptions of the green economy. International environmental agreements. 2015;15:13-27. https://doi.org/10.1007/s10784-014-9265-2.

21. Chernykhivska A. Мodern perspectives of development of «green» economy. Economic processes management. 2015;1:108-115.

22. Domenech T., Bahn-Walkowiak B. Transition towards a resource efficient circular economy in europe: policy lessons from the eu and the member states. Ecological Economics. 2019;155:7-19. https://doi.org/10.1016/j.ecolecon.2017.11.001.

23. Kirchherr J., Reike D., Hekkert M. Conceptualizing the circular economy: an analysis of 114 definitions. Resources, Conservation & Recycling. 2017;127:9. https://doi.org/10.2139/ssrn.3037579.

24. Hart J., Adams K., Giesekam J., Densley D.T., Pomponi F. Barriers and drivers in a circular economy: the case of the built environment. Procedia CIRP. 2019;80:619-624. https://doi.org/10.1016/j.procir.2018.12.015.

25. Tskhovrebov E.S. Formation of regional management strategies of secondary resource handling. Vestnik MGSU = Vestnik MGSU. 2019;14(4):450-463. (In Russ). https://doi.org/10.22227/1997-0935.2019.4.450-463. EDN: EPNQHR.

26. Tshovrebov E.S. Ecological and economic aspects of planning the placement and design of industrial facilities for the processing, disposal, disposal of waste. Vestnik MGSU = Vestnik MGSU. 2018;13(11):1326-1340. (In Russ). https://doi.org/10.22227/1997-0935.2018.11.1326-1340. EDN: YQNVNJ.

27. Kozhukhovsky I.S., Velichko E.G., Tselykovsky Yu.K., Tshovrebov E.S. Organizational, economic and legal aspects of the creation and development of industrial and technical complexes for the processing of ash and slag waste into construction and other products. Vestnik MGSU = Vestnik MGSU. 2019;14(6):756-773. (In Russ). https://doi.org/10.22227/1997-0935.2019.6.756-773. EDN: UGGWQH.

28. Tskhovrebov E., Velichko E., Niyazgulov U. Planning measures for environmentally safe handling with extremely and highly hazardous wastes in industrial, building and transport complex. Materials science fo-rum. 2019;945:988-994. https://doi.org/10.4028/www.scientific.net/MSF.945.988. EDN: DROTAP.

29. Tskhovrebov E.S. A new approach to assessing the parameters of sustainable development in the format of the magnitude of the prevented environmental hazard. Izvestija Tulskogo gosudarstvennogo universiteta. Nauki o zemle. 2023;3:50-68. (In Russ). EDN: EHNHBO.


Review

For citations:


Tshovrebov E.S., Kalaeva S.Z., Petropavlovskaya V.B., Niyazgulov F.Kh. Conceptual modeling of a forecasting system for hazardous waste emergencies. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2023;13(4):702-715. (In Russ.) https://doi.org/10.21285/2227-2917-2023-4-702-715. EDN: QRLFTM

Views: 123


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2917 (Print)
ISSN 2500-154X (Online)