Preview

Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost

Advanced search

Estimation of inflow discharge to Lake Baikal at upstream section using different satellite-based precipitation and runoff datasets from Upper Angara and Kichera River basins in East Siberia, Russia

https://doi.org/10.21285/2227-2917-2024-3-487-500

EDN: MCPXAC

Abstract

Accurate basin-level river discharge estimation is of vital importance across various fields, including water resources, climate change, natural hazards, biodiversity, and energy production. Normally, gauging stations are deemed the most reliable data source for measuring river discharge. However, a significant proportion of the world’s rivers remain ungauged due to a combination of technical, economic, and political constraints. Encouragingly, recent advancements in remote sensing and satellite observation have opened new avenues for global river discharge monitoring, even in ungauged basins, and the availability of extensive datasets and advancements in computing technologies have facilitated the development of numerous modern data-driven techniques. The general objective of this study is to estimate inflow discharge to Lake Baikal at upstream section from Upper Angara and Kichera River Basins using different satellite precipitation and runoff datasets. According to the calculation result, a higher discharge was observed for the power dataset. The obtained results were used to mitigate floods, droughts, bridge design, manage urban drainage systems, and manage the lake ecosystem.

About the Authors

A. K. Yoshe
Arba Minch University ; Irkutsk National Research Technical University
Ethiopia

Agegnehu K. Yoshe, Lecturer, Department of Water Resources and Irrigation Engineering

83, Lermontov St., Irkutsk 664074



E. N. Sutyrina
Irkutsk State University
Russian Federation

Ekaterina N. Sutyrina, Cand. Sci. (Geography), Associate Professor, Head of the Department of Hydrology and Environmental Management

Author ID: 526672

1, Karl Marx St., Irkutsk 664003



V. R. Chupin
Irkutsk National Research Technical University
Russian Federation

Victor R. Chupin, Dr. Sci. (Eng.)., Professor, Head of the Department of Urban Construction and Economy

Author ID: 475565

83 Lermontov St., Irkutsk 664074



I. Yu. Shelekhov
Irkutsk National Research Technical University
Russian Federation

Igor Yu. Shelekhov, Cand. Sci.(Eng.) Associate Professor of the Department of Urban Construction and Economy

Author ID 480140

83 Lermontov St., Irkutsk 664074



References

1. Brakenridge G.R., Cohen S., Kettner A.J., De Groeve T., Nghiem S.V., Syvitski J.P.M. [et al.] Calibration of Satellite Measurements of River Discharge Using a Global Hydrology Model. Journal of Hydrology. 2012;475:123-136. https://doi.org/10.1016/j.jhydrol.2012.09.035.

2. Aiguo Dai, Taotao Qian, Trenberth K.E., Milliman J.D. Changes in Continental Freshwater Discharge from 1948 To 2004. Journal of Climate. 2009;22(10):2773-2792. https://doi.org/10.1175/2008JCLI2592.1.

3. Calmant S., Seyler F. Continental Surface Waters from Satellite Altimetry. Comptes Rendus. Geoscience. 2006;338(14–15):1113-1122. https://doi.org/10.1016/j.crte.2006.05.012.

4. Vörösmarty, C., Askew A., Grabs W., Barry R.G., Birkett C., Döll P. [et al.] Global Water Data: A Newly Endangered Species. Eos. Transactions American Geophysical Union. 2006;82(5):54-58. https://doi.org/10.1029/01EO00031.

5. Tarpanelli A., Santi E., Tourian M.J., Filippucci P., Amarnath G., Brocca L. Daily River Discharge Esti- mates by Merging Satellite Optical Sensors and Radar Altimetry Through Artificial Neural Network. IEEE Transactions on Geoscience and Remote Sensing. 2019;57(1):329-341. https://doi.org/10.1109/TGRS.2018.2854625.

6. Pekel J.F., Cottam A., Gorelick N., Belward A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature. 2016;540:418-422. https://doi.org/10.1038/nature20584.

7. de Oliveira L.M., Maillard P., de Andrade Pinto E.J. Application of A Land Cover Pollution Index to Model Non-Point Pollution Sources in A Brazilian Watershed. Catena. 2017;150:124-132. https://doi.org/10.1016/j.catena.2016.11.015.

8. Borisova T.A., Beshentsev A.N. Flood hazard on the Upper Angara river. IOP Conference Series: Earth and Environmental Science. 2021;885:1-6. http://doi.org/10.1088/1755-1315/885/1/012036.

9. Borisova T.A. Natural-Anthropogenous Risks in The Baikal Lake Basin. Novosibirsk: Geo, 2013. 126 p. (In Russ). EDN: SXQNMR.

10. Potemkina T.G., Sutyrina E.N., Potemkin V.L. Changing of The Riverine Sediment Load Supply into Lake Baikal: The Natural and Anthropogenic Causes (Russia). Quaternary International. 2019;524:57-66. https://doi.org/10.1016/j.quaint.2019.04.027. EDN: NEYTWL.

11. Potemkina T.G., Yaroslavtsev N.A., Petrov V.A. Hydrological and Morphological Features of the Upper Angara Mouth Area. Water Resources. 2012;39(4):366–374. (In Russ). http://doi.org/10.1134/S0097807812030086. EDN: OZKFNR.

12. Vas'kovskii M.G. Surface Water Resources of The USSR. Leningrad: Gidrometeoizdat, 1973–1978. 400 p. (In Russ).

13. Abalakov A.D., Arguchintsev V.K., Arguchintseva A.V., Akhtimankina A.V., Avirmed E., Alekseev S.P. [et al.] Ecological Atlas of the Lake Baikal Basin. Irkutsk: Institute of Geography Named After. V.B. Sochavy, Siberian Branch of the Russian Academy of Sciences, 2015. 145 p. (In Russ). EDN: UEDSFT.

14. Razumov V.V., Kachanov S.A., Razumova N.V., Chirikov A.G., Shagin S.I., Bekkiev M.Yu. [et al.] The Extent and Risk of Floods in The Regions of Russia. Moscow: All-Russian Research Institute for Civil Defense and Emergency Situations of the Ministry of Emergency Situations of Russia, 2018. 364 p. (In Russ).

15. Potemkina, T.G., Potemkin, V.L. Sediment Load Of the Main Rivers of Lake Baikal in A Changing Environment (East Siberia, Russia). Quaternary International. 2015;380–381:342-349. https://doi.org/10.1016/j.quaint.2014.08.029.

16. Potemkina T.G., Sutyrina E.N., Potemkin V.L. Changing of The Riverine Sediment Load Supply into Lake Baikal: The Natural and Anthropogenic Causes (Russia). Quaternary International. 2019;524:57-66. https://doi.org/10.1016/j.quaint.2019.04.027.

17. Yoshe A.K. Water Availability Identification from GRACE Dataset and GLDAS Hydrological Model Over Data-Scarce River Basins of Ethiopia. Hydrological Sciences Journal. 2024;69(6):721-745. https://doi.org/10.1080/02626667.2024.2333852.

18. Alfieri L., Lorini V., Hirpa F.A., Harrigan S., Zsoter E., Prudhomme C. [et al.] A Global Streamflow Reanalysis for 1980–2018. Journal of Hydrology X. 2020;6:1-12. https://doi.org/10.1016/j.hydroa.2019.100049.

19. Tadd Bindas, Wen-Ping Tsai, Jiangtao Liu, Farshid Rahmani, Dapeng Feng, Yuchen Bian [et al.] Improving Large-Basin Streamflow Simulation Using a Modular, Differentiable, Learnable Graph Model for Routing. Hydrology. 2022:1-37. https://doi.org/10.1002/essoar.10512512.1.

20. Verkhoturova L.A. Long-Term Data On the Regime and Resources of Land Surface Waters. Leningrad: Gidrometeoizdat, 1986. 361 p. (In Russ).


Review

For citations:


Yoshe A.K., Sutyrina E.N., Chupin V.R., Shelekhov I.Yu. Estimation of inflow discharge to Lake Baikal at upstream section using different satellite-based precipitation and runoff datasets from Upper Angara and Kichera River basins in East Siberia, Russia. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2024;14(3):487-500. https://doi.org/10.21285/2227-2917-2024-3-487-500. EDN: MCPXAC

Views: 191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-2917 (Print)
ISSN 2500-154X (Online)