Experimental study into the sedimentation process of solids of different origin
https://doi.org/10.21285/2227-2917-2024-3-513-523
EDN: OCIGHE
Abstract
Sedimentation refers to the first stage of wastewater treatment from mechanical impurities. Its rate depends on the density and particle size of impurities, as well as the density and viscosity of dispersion medium. In industrial sedimentation tanks, particle settling can occur in laminar, transient or turbulent modes. Aim. To establish the criterion equations and their coefficients for sedimentation processes of sand, glass and polyamide granules. Sedimentation of sand particles of 0.001– 0.003 m, spherical glass particles with the diameter of 0.0025–0.004 m and polyamide granules with the volume-surface mean diameter of 0.0022–0.003 m was carried out in a measured glass cylinder filled with distilled water. Each solid particle was measured, then, it came into contact with the water surface by means of tweezers, and released, starting to settle to the bottom of the cylinder under the action of gravity. A stopwatch was used to time the particle passaging between the marks of the measured cylinder. Calculations were performed using dimensional analysis. According to the test results, the dependences of the Reynolds number on the Archimedes number were established for the sedimentation of sand particles and polyamide granules in the transient mode, while spherical glass particles in the turbulent mode. In addition, the criterion equations of the solid particles sedimentation in the liquid were derived. The coefficients for these equations were experimentally determined. The equations and coefficients obtained in the study can be used in the design of settling tanks for mechanical treatment of wastewater to remove sand, glass and polymer particles.
About the Authors
A. V. BalchugovRussian Federation
Aleksej V. Balchugov, Dr. Sci. (Eng.), Associate Professor, Vice-Rector
Author ID: 268365
5, 85A district, Angarsk 665835
A. A. Baranova
Russian Federation
Albina A. Baranova, Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Industrial and Civil Engineering
Author ID: 680451
5, 85A district, Angarsk 665835
References
1. Galkin Yu.A., Ulasovets E.A., Baskov E.M., Boltaev V.A., Selitskii G.A. Improving The Design and Intensifying the Operation of Structures for The Mechanical Treatment of Industrial and Storm Wastewater. Vodoochistka. Vodopodgotovka. Vodosnabzhenie. 2008;1(1):42-48. (In Russ.). EDN: IYEMTM.
2. Burenin V.V. New Technologies for Treating Wastewater from Petroleum Products and Mechanical Impurities. Transport i khranenie nefteproduktov. 2007;4:19-21. (In Russ.). EDN: KXASUN.
3. Novoselov A.M., Novoselova E.B. Mechanical Dewatering of Sludge During Wastewater Treatment. In: Sovremennye instrumental'nye sistemy, informacionnye tehnologii i innovacii. Sbornik nauchnyh trudov XII-oj Mezhdunarodnoj nauchno-prakticheskoj konferencii: v 4-h t = Modern Instrumental Systems, InformationTechnologies and Innovations. Collection of Scientific Papers of The XII International Scientific and Practical Conference: In 4 Volumes. 19–20 March 2015, Kursk. Kursk; 2015. Vol. 3. p. 248–250. (In Russ.). EDN: TRBEVR.
4. Kadyrova A.M. The Mechanical and Physico-Chemical Methods of Sewage Treatment. Nauka v sovremennykh usloviyakh: ot idei do vnedreniya. 2015;1:81-85. (In Russ.). EDN: WHJNUN.
5. Il'in P.P. New Opportunities in Mechanical Wastewater Treatment. Meat Technology. 2016;11(167):34-35. (In Russ.). EDN: XSFBVL.
6. Popov A.V., Nazimko E.I. Mechanical Wastewater Treatment. In: Molodoi issledovatel': vyzovy i perspektivy. Sbornik statei po materialam ХХХI Mezhdunarodnoi nauchno-prakticheskoi konferentsii = Young Researcher: Challenges and Prospects. Collection of Articles Based On the Materials of The XXXI International Scientific and Practical Conference. Moscow; 2017. Iss. 6 (31). p. 99-102. (In Russ.). EDN: YKBRDJ.
7. Varezhkin Yu.M., Mikhailova A.N., Sinitsyna I.N. Wastewater Treatment. Moscow: NIITEKHIM, 1989. 54 p. (In Russ.).
8. Tatevosyan G. Application of Autonomous Sewerage Systems in Wastewater Treatment Processes. Vodoochistka. 2020;1:9-17. (In Russ.). EDN: DFUCUD.
9. Myrzalieva S.K., Pratama G.N.I.P., Khamidulla A.G. Wastewater Treatment Using Natural Zeolite Materials. Complex Use of Mineral Resources. 2021;2(317):64-68. https://doi.org/10.31643/2021/6445.19. EDN: AYQITV.
10. Ksenofontov B.S. Purification of Waste Water from Industrial Enterprises. Scientific, Practical and Educational-Methodical Journal Life Safety. 2011;3:1-24. EDN: NDXPVJ.
11. Tchobanoglous G., Stensel H.D., Tsuchihashi R., Burton F.L. Wastewater Engineering: Treatment and Resource Recovery. New York: McGraw-Hill, 2013. 2048 p.
12. Dudorov V.E., Khismatulina D.N., Iskhakova E.R. Methods of Wastewater Treatment, Types of Treatment Facilities and Innovations in The Field of Wastewater Treatment. Nauka sredi nas. 2019;4(20):43-48. (In Russ.). EDN: PREGZQ.
13. Manar Elsayed A.-R., Nermine E M., Reem K.F., Abdul-Raheim Mahmoud A.-R. Wastewater Treatment Methodologies. International Journal of Environment and Agricultural Science. 2019;3(1):1-25.
14. Zăbavă B.S., Voicu Gh., Ungureanu N., Dincă M., Safta V.V. Basic Equipment for The Mechanical Treatment of Wastewater. In: International Symposium ISB-INMA TEH, Agricultural and Mechanical Engineering. 2015. P. 349–356.
15. Aqeel A., Zafar J. Comprehensive Note on Various Wastewater Treatment Strategies. In: Aquatic Contamination: Tolerance and Bioremediation. Hoboken: John Wiley & Sons, 2023. P. 345–365. https://doi.org/10.1002/9781119989318.ch20.
16. Nuralhuda A.J., Hamidi A.A. The Design for Wastewater Treatment Plant (WWTP) With GPS X Modelling. Cogent Engineering. 2020;7(1):1-33. https://doi.org/10.1080/23311916.2020.1723782.
17. Avijit Mallik, Md. Arman Arefin, Mhia Md. Zaglul Shahadat Design and Feasibility Analysis of a Low-Cost Water Treatment Plant for Rural Regions of Bangladesh. AIMS Agriculture and Food. 2018;3(3):181-204. https://doi.org/10.3934/agrfood.2018.3.181.
18. Chebotareva A.A., Barieva E.R., Serazeeva E.V. Features of Urban Wastewater Treatment and Increasing Treatment Efficiency. Akademicheskii vestnik ELPIT. 2021;6(4):12-17. (In Russ.). EDN: VFBIQA.
19. Bourgin M., Beck B., Boehler M., Borowska E., Fleiner J., Salhi E. [et al.] Evaluation of A Full-Scale Wastewater Treatment Plant Upgraded with Ozonation and Biological Post-Treatments: Abatement of Micropollutants, Formation of Transformation Products and Oxidation By-Products. Water Research. 2018;129(1):486-498. https://doi.org/10.1016/j.watres.2017.10.036.
20. Alaa Fahad, Radin Maya Saphira Mohamed, Bakar Radhi, Mohammed Al-Sahari Wastewater and its Treatment Techniques: An Ample Review. Indian Journal of Science and Technology. 2019;12(25):1-13. https://doi.org/10.17485/ijst/2019/v12i25/146059.
21. Arkhipov V.A., Usanina A.S., Zolotorev N.N., Maslov E.A. Dynamics of The Process of Sedimentation of Solid Particles in Liquid. In: Materialy XX Jubilejnoj Mezhdunarodnoj konferencii po vychislitel'noj mehanike i sovremennym prikladnym sistemam (VMSPPS 2017) = Proceedings of the XX Anniversary International Conference on Computational Mechanics and Modern Applied Systems (VMSPPS 2017). 24–31 May 2017, Alushta. Moscow; 2017. p. 612-613. (In Russ.). EDN: ZSLZTV.
22. Kadirova G.O., Azizova U.Kh., Dekhkanov Z.K. Investigation of The Process of Subsidizing and Fixing Insolvent Demands in Industrial Enterprises of the Namanagan Area. Universum: khimiya i biologiya. 2020;4(70):67-70. (In Russ.). EDN: VCCICY.
23. Gasanov A.A., Gamzaeva N.Kh. Imulation of Sedimentation Process of Solid Particle from Liquid Flow in Horizontal Gravity Separator. Khimicheskaya tekhnologiya. 2020;21(5):230-235. https://doi.org/10.31044/1684-5811-2020-21-5-230-235. (In Russ.). EDN: KWXISI.
24. Voronenko B.A., Pelenko V.V., Polyakov S.V. On The Deposition Process Herein Hydromechanical Solids in A Liquid Medium. Protsessy i apparaty pishchevykh proizvodstv. 2013;4:1-6. (In Russ.). EDN: SXIRML.
25. Kyrlan V.V., Blaznov A.N., Frolov A.V. Study of Solids Sedimentation in Flotation Wastewater Treatment Processes. Vodoochistka. 2013;5:28-33. (In Russ.). EDN: PZVQMP.
26. Blaznov A.N., Kyrlan V.V., Frolov A.V., Bazhin V.E., Ivanova D.B. Experimental Studies of Solid Particle Sedimentation Under the Influence of Gravitational and Centrifugal Forces in Flotation Wastewater Treatment Processes. Polzunovskii vestnik. 2013;3:293-299. (In Russ.). EDN: RDDXUN.
27. Tarasenko A.S., Gubanov N.D. Direction of Modernization Scheme for Mechanical Wastewater Treatment of JSC Angarsk Petrochemical Company. Young Researchers' Journal of ISTU. 2019;9(1):89-94. (In Russ.). EDN: OQODHP.
28. Vaitsel' A.A. Mechanical Methods of Wastewater Treatment. Nauka, obrazovanie i kul'tura. 2019;3(37):13-14. (In Russ.). EDN: QJBYEN.
29. Balchugov A.V., Badenikov A.V., Baranova A.A. Criterion Equation for The Sedimentation Process in The Transition Regime. Bulletin of The Angarsk State Technical University. 2023;17:53-56. (In Russ.). EDN: LLJJCP.
30. Balchugov A.V., Badenikov A.V., Baranova A.A. Experimental Study of the Sedimentation Process Sand Particles in Turbulent Regime. Sovremennye tekhnologii i nauchno-tekhnicheskii progress. 2024;11:3-4. (In Russ.). EDN: GENIDV.
Review
For citations:
Balchugov A.V., Baranova A.A. Experimental study into the sedimentation process of solids of different origin. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2024;14(3):513-523. (In Russ.) https://doi.org/10.21285/2227-2917-2024-3-513-523. EDN: OCIGHE