Sorption moisture of cellular concrete
https://doi.org/10.21285/2227-2917-2025-1-54-63
EDN: CYZMBK
Abstract
The present article compares grades of cellular concrete in terms of sorption moisture as a significant performance characteristics of building materials for enclosing structures. The studies conducted in accordance with GOST 12852.6 used D400, D600, and D800 non-autoclaved cellular microsilica concrete, as well as D500 and D600 autoclaved aerated concrete. During the study, sorption isotherms of cellular concrete were plotted for the relative air humidity range of 57–100%. According to the conducted experiments, the relative air humidity growing from 57 to 100% increases the sorption moisture of non-autoclaved cellular concrete with an average density of 400, 600, and 800 kg/m3 by 3.67, 5.58, and 5.37 times, respectively. For autoclaved aerated concrete samples with an average density of 500 kg/m3 and 600 kg/m3, the increase is 10.85 and 10.69 times, respectively. The obtained results have proved the value of sorption moisture depending less on the average density of cellular concrete as compared to the density and water resistance of interpore partitions, which are most affected by the hardening conditions of cellular concrete.
About the Author
A. A. BaranovaRussian Federation
Albina A. , Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Industrial and Civil Engineering
5, 85a District, Angarsk 665835
AuthorID: 680451
Competing Interests:
The author declares no conflict of interests
References
1. Kiselyov I.Ya. Experimental Study of the Dependence of Equilibrium Sorption Moisture of Building Materials On Temperatures. Academia. Arkhitektura i stroitel'stvo. 2009;5:492-495. (In Russ.). EDN: MTPETZ.
2. Kiselyov I.Ya. Empirical Formulas Describing the Sorption Isotherms of Building Materials at Positive and Negative Temperatures. Vestnik otdeleniya stroitel'nykh nauk RAASN. 2010;14(2):87-93. (In Russ.).
3. Kiselyov I.Ya. Influence of Equilibrium Sorption Humidity of Construction Materials On Heat Transfer Resistance of Buildings External Fencing Structures. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka. 2014;8(187):34-35. (In Russ.). EDN: SZSXHD.
4. Kiselyov I.Ya. Equilibrium Sorption Humidity of Cellular Concretes and Its Polymolecular-Adsorbed and Capillary-Condensed Components. Construction Materials. 2015;6:20-22. (In Russ.). EDN: UDEIBX.
5. Kiselyov I.Ya. Method for Accelerated Determination of Equilibrium Sorption Humidity of Light and Cellular Concretes. Construction Materials. 2016;6:12-14. (In Russ.). EDN: WFGMBX.
6. Tkach E.V., Semenov V.S., Tkach S.A. Improving The Hydrophysical Properties of Aerated Concrete with The Usage of Industrial Waste. Nauchnoe obozrenie. 2015;14:194-198. (In Russ.). EDN: UMLSGH.
7. Kupriyanov V.N., Yuzmuhametov A.M., Safin I.Sh. Influence of Moisture On Heat Conductivity of Walling Materials. The State of the Issue. News of the Kazan State University of Architecture and Engineering. 2017;1(39):102-110. (In Russ.). EDN: YIOARV.
8. Strotskiy V.N., Zimin S.G., Zhorobaev S.S., Krokhin A.M. Sorption Humidity and Vapor Permeability of Cellular Concrete. Bulletin of the Scientific Research Center Construction. 2020;4(27):117-125. (In Russ.). https://doi.org/10.37538/2224-9494-2020-4(27)-117-125. EDN: AFVECI.
9. Shakirova V.A. Accumulation of Moisture of Cellular Concrete Wall Structures in The Annual Cycle. Urban Studies. 2021;4:55-67. (In Russ.). https://doi.org/10.7256/2310-8673.2021.4.37174. EDN: VYXYBT.
10. Mordzich M.M. Technology and Physico-Mechanical Properties of Claydite Foam Concrete for Monolithic and Prefabricated Construction. Science and Technique. 2019;18(4):292-302. (In Russ.). https://doi.org/10.21122/2227-1031-2019-18-4-292-302. EDN: JWCBXR.
11. Serova R.F., Rakhimova G.M., Tkach S.A., Stasilovich E.A., Russanov A.A. Obtaining Effective Modified Gas-Concrete Using Industrial Wastes and Secondary Raw Materials. International Journal of Experimental Education. 2015;8-1:41-46. (In Russ.). EDN: TZGBVH.
12. Gnip I.Ya., Veyalis S.A., Kershulis V.I. Isotherms of Water Vapor Sorption by Light Inorganic and Polymer Heat-Insulating Materials. Journal of Engineering Physics and Thermophysics. 2006;79:40-47. https://doi.org/10.1007/s10891-006-0064-7.
13. Kunhanandan Nambiar E.K., Ramamurthy K. Sorption Characteristics of Foam Concrete. Cement and Concrete Research. 2007;37(9):1341-1347. https://doi.org/10.1016/j.cemconres.2007.05.010.
14. Hall C., Raymond Yau M.H. Water Movement in Porous Building Materials-IX. The Water Absorption and Sorptivity of Concretes. Building and Environment. 1987;22(1):77-82. https://doi.org/10.1016/0360-1323(87)90044-8.
15. Gopalan M.K. Sorptivity of Fly Ash Concretes. Cement and Concrete Research. 1996;26(8):1189-1197. https://doi.org/10.1016/0008-8846(96)00105-6.
16. Lam Nguyen Trong, Shingo Asamoto, Kunio Matsui Sorption Isotherm and Length Change Behavior of Autoclaved Aerated Concrete Cement https://doi.org/10.1016/j.cemconcomp.2018.09.003.
17. Narayanan N., Ramamurthy K. Structure and Properties of Aerated Concrete: A Review. Cement and Concrete Composites. 2000;22(5):321-329. https://doi.org/10.1016/S0958-9465(00)00016-0.
18. Hock Yong Tiong, Siong Kang Lim, Yee Ling Lee, Ming Kun Yew, Jee Hock Lim Absorption and Strength Properties of Lightweight Foamed Concrete with Egg Shell Powder as Partial Replacement Material of Cement. IOP Conference Series: Earth and Environmental Science. 2020;476:1-11. https://doi.org/10.1088/1755-1315/476/1/012021.
19. Kearsley E.P., Wainwright P.J. Porosity and Permeability of Foamed Concrete. Cement and Concrete Research. 2001;31(5):805-812. https://doi.org/10.1016/S0008-8846(01)00490-2.
20. Madjoudj N., Dheilly R.M., Queneudec M., Dhir R.K., Hewlett P.C., Csetenyi L.J. Water Capillary Absorption of Cellular Clayed Concrete Obtained by Proteinic Foaming. Innovations and Developments in Concrete Materials and Construction. 2002:513-521.
21. Khatib J.M., Clay R.M. Absorption Characteristics of Metakaolin Concrete. Cement and Concrete Research. 2004;34(1):19-29. https://doi.org/10.1016/S0008-8846(03)00188-1.
22. Abd Elrahman M., Sang-Yeop Chung, Dietmar S. Effect of Different Expanded Aggregates On the Properties of Lightweight Concrete. Magazine of Concrete Research. 2019;71(2):95-107.
23. Karolina R., Sianipar Y.G.C. The Utilization of Stone Ash On Cellular Lightweight Concrete. IOP Conference Series: Materials Science and Engineering. 2018;309:1-6. https://doi.org/10.1088/1757-899X/309/1/012084.
24. Raj A., Sathyan D., Mini K.M. Physical and Functional Characteristics of Foam Concrete: A Review. Construction and Building Materials. 2019;221:787-799. https://doi.org/10.1016/j.conbuildmat.2019.06.052.
25. Jitchaiyaphum K., Sinsiri T., Jaturapitakkul C., Chindaprasirt P. Cellular Lightweight Concrete Containing High-Calcium Fly Ash and Natural Zeolite. International Journal of Minerals, Metallurgy, and Materials. 2013;20:462-471. https://doi.org/10.1007/s12613-013-0752-1.
26. Baranova A.A., Savenkov A.I. Aerated Concrete Modified by Silicafume of “Kremniy” CJSC. Proceedings of Irkutsk State Technical University. 2014;8(91):78-82. (In Russ.). EDN: SYRBUJ.
27. Baranova A., Bygajchuk V. Investigation of Water Absorption of Non-Autoclaved Foam Concretes Based On Microsilica. IOP Conference Series: Materials Science and Engineering. 2020;880:1-6. https://doi.org/10.1088/1757-899X/880/1/012003. EDN: TBCMNH.
28. Baranova A., Chernykh V. Water Absorption of Cellular Concretes Made On the Basis of Technogenic Raw Materials. IOP Conference Series: Earth and Environmental Science. 2021;751:1-7. https://doi.org/10.1088/1755-1315/751/1/012114.
29. Chernykh V.A., Baranova A.A., Skulin A.S., Kotsyr A.I. Determination of Sorption Humidity of Cellular Concrete. Modern Technologies and Scientific and Technological Progress. 2021;1(8):203-204. EDN: JYFPCX.
Review
For citations:
Baranova A.A. Sorption moisture of cellular concrete. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2025;15(1):54-63. (In Russ.) https://doi.org/10.21285/2227-2917-2025-1-54-63. EDN: CYZMBK