The use of seasonal accumulation of natural cold in modern air conditioning as a technology to reduce greenhouse gas emissions
https://doi.org/10.21285/2227-2917-2025-3-454-465
EDN: NWKQME
Abstract
Air conditioning systems are one of the main consumers of electric energy during the warmer months. Natural cold has been used for indoor air conditioning since ancient times. The possibility of harvesting snow and using accumulated cold for various purposes during the warm season is being studied in a number of countries, such as the USA, Canada, Japan, Sweden, Norway, China. The purpose of the article is to review the existing natural sources of cold for air conditioning systems, their classification and analysis of the reduction of CO2 emissions when using natural cold for an airport air conditioning system. There are two main types of natural sources of cold: permanent action and accumulators of natural cold. The classification of air conditioning systems with seasonal accumulation of ice or snow, methods of insulation of open snow storage facilities are considered. The calculation of the reduction of CO2 emissions was performed when using an open-type cold storage facility as a source of cold for the fan coil system at the Yuzhno-Sakhalinsk airport. The reduction in annual emissions is up to 61 tons of CO2 per year, with an installed cooling system capacity of 157.4 kW or 0.39 tons per 1 kW of power. Thus, seasonal accumulation of snow or ice is a technology that makes it possible to reduce energy consumption and reduce greenhouse gas emissions.
About the Authors
V. S. KorotynskayaRussian Federation
Veronika S. Korotynskaya, Postgraduate Student, Assistant
10, Ajax Bay, Russky Island, Vladivostok 690922
Author ID: 1280813
E. V. Tarasova
Russian Federation
Elena V. Tarasova, Cand. Sci. (Eng.), Associate Professor of the Department of Energy Systems
10, Ajax Bay, Russky Island, Vladivostok 690922
Author ID: 645392
References
1. Willibald F., Kotlarski S., Ebner P.P., Bavay M., Marty C., Trentini F.V. et al. Vulnerability of Ski Tourism Towards Internal Climate Variability and Climate Change in The Swiss Alps. Science of The Total Environment. 2021;784:1-18. https://doi.org/10.1016/j.scitotenv.2021.147054.
2. Tiismus H., Maask V., Astapov V., Korotko T., Rosin A. State-of-the-Art Review of Emerging Trends in Renewable Energy Generation Technologies. IEEE Access. 2025;13:10820-10843. https://doi.org/10.1109/ACCESS.2025.3528640.
3. Stec A., Słys D., Ogarek P., Bednarz K., Bartkowska I., Gwoździej-Mazur J. et al. Assessment of Possibilities of Using Local Renewable Resources in Road Infrastructure Facilities – A Case Study from Poland. Energies. 2024;17(24):1-22. https://doi.org/10.3390/en17246351.
4. Ignashchenko O.O., Kovrina O.E. Roviding Comfort and Energy Saving in Residential Buildings. Engineering Journal of Don. 2021;7:496-502. (In Russ.). EDN: TSYASD.
5. Strongin A.S. Efficiency Assessment of Cold Supply Systems in Public Buildings. Part 2. Economic and Ecological Efficiency. Energosberezhenie. 2020;3:64-68. (In Russ.).
6. Nekrasov S.A., Klimenko V.V. On Ways to Reduce the Energy Supply Costs in Russia. MIR (Modernization. Innovation. Research). 2024;15(3):356-370. (In Russ.). https://doi.org/10.18184/2079-4665.2024.15.3.356-370. EDN: AWWEFQ.
7. Haiwen Chen, Feng Zheng, Rongcai Song, Chao Zhang, Ben Dong, Jiahao Zhang et al. Geothermal Resource Assessment and Development Recommendations for the Huangliu Formation in the Central Depression of the Yinggehai Basin. Sustainability. 2024;16(16):1-24. https://doi.org/10.3390/su16167104.
8. Rudenko N.N., Pirozhnikova A.P., Korobov V.A. Use of Cold Storage in the Air Conditioning System of a Sports Complex. Engineering Journal of Don. 2021;11:242-250. (In Russ.). EDN: SFADRX.
9. Xing Wang, Feiteng Wang, Jiawen Ren, Dahe Qin, Huilin Li Assessing The Key Concerns In Snow Storage: A Case Study For China. The Cryosphere. 2024;18(7):3017-3031. https://doi.org/10.5194/tc-18-3017-2024.
10. Chengchu Yan, Wenxing Shi, Xianting Li, Shengwei Wang A Seasonal Cold Storage System Based on Separate Type Heat Pipe for Sustainable Building Cooling. Renewable Energy. 2016;85:880-889. https://doi.org/10.1016/j.renene.2015.07.023.
11. Kumar V., Hewage K., Haider H., Sadiq R. Sustainability Evaluation Framework for Building Cooling Systems: A Comparative Study Of Snow Storage and Conventional Chiller Systems. Clean Technologies and Environmental Policy. 2017;19:137-155. https://doi.org/10.1007/s10098-016-1198-8.
12. Chengchu Yan, Wenxing Shi, Xianting Li, Yang Zhao Optimal Design and Application of A Compound Cold Storage System Combining Seasonal Ice Storage and Chilled Water Storage. Applied Energy. 2016;171:1-11. https://doi.org/10.1016/j.apenergy.2016.03.005.
13. Hamada Y., Nagata T., Kubota H., Ono T., Hashimoto Y. Study on A Snow Storage System in A Renovated Space. Renewable Energy. 2012;41:401-406. https://doi.org/10.1016/j.renene.2011.11.012.
14. Persson J., Westermark M. Low-Energy Buildings and Seasonal Thermal Energy Storages from a Behavioral Economics Perspective. Applied Energy. 2013;112:975-980. https://doi.org/10.1016/j.apenergy.2013.03.047.
15. Hamada Y., Nakamura M., Kubota H. Field Measurements and Analyses for A Hybrid System for Snow Storage/Melting and Air Conditioning by Using Renewable Energy. Applied Energy. 2007;84(2):117-134. https://doi.org/10.1016/j.apenergy.2006.07.002.
16. Chengchu Yan, Fengling Wang, Yan Pan, Kui Shan, Risto Kosonen A Multi-Timescale Cold Storage System within Energy Flexible Buildings for Power Balance Management of Smart Grids. Renewable Energy. 2020;161:626-634. https://doi.org/10.1016/j.renene.2020.07.079.
17. Maex Moe J. Using Stored Snow as Cooling at Oslo Airport, Norway. Proceedings of the Institution of Civil Engineers – Civil Engineering. 2018;171(5):11-16. https://doi.org/10.1680/jcien.17.00041.
18. Alaiwi Y., Al-Omari S.B. Types of Cooling Towers: A Review. Babylonian Journal of Mechanical Engineering. 2024;2024:106-114. https://doi.org/10.58496/BJME/2024/013.
19. Abdullah A.K., Qasim M.S., Ahmed M.Q. Thermal Characteristics Investigation of Natural Draft Hybrid (Wet/Dry) Cooling Tower. International Journal of Modern Manufacturing Technologies. 2022;14(3):10-15. http://doi.org/10.54684/ijmmt.2022.14.3.10.
20. Skogsberg K., Nordell B. The Sundsvall Hospital Snow Storage. Cold Regions Science and Technology. 2001;32(1):63-70. https://doi.org/10.1016/S0165-232X(00)00021-5.
21. Weiss H.S., Bierman P.R., Dubief Y., Hamshaw S.D. Optimization of Over-Summer Snow Storage At Midlatitudes and Low Elevation. The Cryosphere. 2019;13(12):3367-3382. https://doi.org/10.5194/tc-13-3367-2019.
22. Tarasova E.V., Shtym A.S. The Schemes and Designs of Natural Cold Accumulators in Air-Conditioning Systems. Far Eastern Federal University School of Engineering Bulletin. 2012;4:70-78. (In Russ.). EDN: PKMVSD.
23. Xing Wang, Da-He Qin, Jia-Wen Ren, Fei-Teng Wang Numerical Estimation of Thermal Insulation Performance of Different Coverage Schemes at Three Places for Snow Storage. Advances in Climate Change Research. 2021;12(6):903-912. https://doi.org/10.1016/j.accre.2021.10.003.
24. Di Liu, Xiaofeng Li, Yuexia Dong, Lihua Zhu, Xin Peng Performance Research and Application Progress of Thermal Insulation Materials for Cold Storage. Academic Journal of Science and Technology. 2023;8(2):114-120. https://doi.org/10.54097/ajst.v8i2.15052.
25. Ilina K.V., Moiseenko A.S., Gubenko A.L. Materials Used For Finishing Facades in Northern Climates. In: Molodezh i sistemnaya modernizatsiya strany. Sbornik nauchnykh statei 7-i Mezhdunarodnoi nauchnoi konferentsii studentov i molodykh uchenykh = Youth and Systemic Modernization of The Country. Collection of Scientific Articles of the 7th International Scientific Conference of Students and Young Scientists. 19–20 May 2022, Kursk. Kursk; 2022. P. 165–168. (In Russ.). EDN: HWJWXA.
26. Omurzakov A., Sarbaeva N.M. Comparative Analysis of Modern Thermal Insulation Materials. Nauka i innovatsionnye tekhnologii. 2023;2:201-204. (In Russ.). https://doi.org/10.33942/sit042322. EDN: VKCCON.
27. Khalikov D.A., Khalikova G.S., Goncharova T.V., Islamov K.F. Evolution of Heat-Insulating Construction Materials. Fundamental Research. 2015;10-3:529-533. (In Russ.). EDN: UNXWJR.
28. Grünewald T., Wolfsperger F., Lehning M. Snow Farming: Conserving Snow Over The Summer Season. The Cryosphere. 2018;12(1):385-400. https://doi.org/10.5194/tc-12-385-2018.
29. Tulyakov E.I. Thermal Insulation Roll Material Based on Foamed Polyethylene. In: Obrazovanie. Nauka. Proizvodstvo. Sbornik dokladov XIV Mezhdunarodnogo molodezhnogo foruma = Education. Science. Production. Collection of Reports of the XIV International Youth Forum. 13–14 October 2022, Belgorod. Belgorod; 2022. Vol. 14. P. 174–179. (In Russ.). EDN: UPMCLC.
30. Abildinova S.K., Beisen D.M., Baydyusenov G.N. Estimation of Efficiency of Heat-Insulating Construction from Foam Polyurethane at Various Ways of Laying Heat Networks. Vestnik Almatinskogo universiteta energetiki i svyazi. 2019;4:28-33. (In Russ.). https://doi.org/10.51775/1999-9801_2019_47_4_28. EDN: BNAPWP.
31. Galdina V.D., Satjuk M.S. Features of the Structure and Properties of Ceramic and Ceramic Concrete. In: Arkhitekturno-stroitel'nyi i dorozhno-transportnyi kompleksy: problemy, perspektivy, innovatsii. Sbornik materialov VIII Mezhdunarodnoi nauchno-prakticheskoi konferentsii = Architectural, Construction and Road Transport Complexes: Problems, Prospects, Innovations. Collection of Materials of the VIII International Scientific and Practical Conference. 23–24 November 2023, Omsk. Omsk; 2023. P. 516–519. (In Russ.). EDN: HRQMUG.
32. Min Li, Yafei Guan Study on Preparation and Heat Storage Performance of Paraffin-Expanded Vermiculite-Based Phase Change Concrete. Journal of Thermal Analysis and Calorimetry. 2024;149:14605-14614. https://doi.org/10.1007/s10973-024-13832-y.
Review
For citations:
Korotynskaya V.S., Tarasova E.V. The use of seasonal accumulation of natural cold in modern air conditioning as a technology to reduce greenhouse gas emissions. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2025;15(3):454-465. (In Russ.) https://doi.org/10.21285/2227-2917-2025-3-454-465. EDN: NWKQME